聚类的评估方法

内部评估指标

内部评估方法基于数据本身的特征,不依赖外部标签,适用于无监督学习场景。

轮廓系数(Silhouette Coefficient)

衡量样本与自身簇和其他簇的距离,取值范围为[-1, 1]。值越接近1表示聚类效果越好。公式为:

s(i) = \\frac{b(i) - a(i)}{\\max{a(i), b(i)}}

其中,a(i)是样本i到同簇其他样本的平均距离,b(i)是样本i到最近其他簇的平均距离。

戴维森-堡丁指数(Davies-Bouldin Index, DBI)

反映簇内距离与簇间距离的比值,值越小聚类效果越好。公式为:

DBI = \\frac{1}{k} \\sum_{i=1}\^k \\max_{j \\neq i} \\left( \\frac{\\sigma_i + \\sigma_j}{d(c_i, c_j)} \\right)

其中,\\sigma_i为簇i的平均距离,d(c_i, c_j)为簇中心距离。

Calinski-Harabasz指数(CH指数)

通过簇间离散度与簇内离散度的比值评估聚类,值越大效果越好。公式为:

CH = \\frac{\\text{tr}(B_k)}{\\text{tr}(W_k)} \\times \\frac{n - k}{k - 1}

B_k为簇间离散矩阵,W_k为簇内离散矩阵,n为样本数,k为簇数。


外部评估指标

外部评估方法依赖真实标签,适用于有监督验证的场景。

调整兰德指数(Adjusted Rand Index, ARI)

比较聚类结果与真实标签的相似度,取值范围为[-1, 1],值越接近1表示聚类与标签越一致。公式为:

ARI = \\frac{\\text{RI} - E\[\\text{RI}\]}{\\max(\\text{RI}) - E\[\\text{RI}\]}

RI为兰德指数,E\[\\text{RI}\]为期望值。

归一化互信息(Normalized Mutual Information, NMI)

衡量聚类结果与真实标签的信息共享程度,取值范围为[0, 1]。公式为:

NMI = \\frac{I(U; V)}{\\sqrt{H(U)H(V)}}

I(U; V)为互信息,H(U)H(V)为熵。

Fowlkes-Mallows指数(FMI)

基于成对样本的准确率和召回率几何平均,值越接近1效果越好。公式为:

FMI = \\sqrt{\\frac{TP}{TP + FP} \\times \\frac{TP}{TP + FN}}

TP、FP、FN分别为真正例、假正例、假反例。


其他实用方法

肘部法则(Elbow Method)

通过观察不同簇数下损失函数(如SSE)的变化曲线,选择拐点对应的k值。

间隙统计量(Gap Statistic)

比较实际数据与参考数据的聚类效果差异,选择使间隙值最大的k。公式为:

\\text{Gap}(k) = E\[\\log(W_k)\] - \\log(W_k)

W_k为簇内离散度,E\[\\cdot\]为参考数据期望。

稳定性评估

通过多次聚类结果的相似性(如Jaccard指数)评估算法稳定性,适用于数据扰动场景。

相关推荐
好奇龙猫27 分钟前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)35 分钟前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan36 分钟前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维42 分钟前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS1 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd1 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
独自破碎E1 小时前
【二分法】寻找峰值
算法
mit6.8242 小时前
位运算|拆分贪心
算法
水如烟2 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然2 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析