pythonstudy Day41

早停策略和模型权重的保存

@疏锦行

clike 复制代码
import os
import random
from dataclasses import dataclass
from typing import Dict, Tuple

import numpy as np
import pandas as pd

import joblib
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, confusion_matrix


# =========================
# 0) Config
# =========================
@dataclass
class Config:
    data_path: str = "data.xlsx"
    target_col: str = "Credit Default"
    drop_cols: Tuple[str, ...] = ("Id",)

    seed: int = 42
    batch_size: int = 256

    # Stage 1 training
    stage1_max_epochs: int = 30

    # Stage 2 training (resume)
    stage2_max_epochs: int = 50

    # Early stopping
    patience: int = 8
    min_delta: float = 1e-4

    # Optimization
    lr: float = 1e-3
    weight_decay: float = 1e-4

    # Artifacts
    artifacts_dir: str = "artifacts"
    preprocess_file: str = "preprocess.joblib"
    checkpoint_file: str = "checkpoint_best.pt"
    final_weights_file: str = "model_final.pt"


CFG = Config()
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"


# =========================
# 1) Utils
# =========================
def set_seed(seed: int) -> None:
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


def ensure_dir(path: str) -> None:
    os.makedirs(path, exist_ok=True)


def to_dense(x):
    return x.toarray() if hasattr(x, "toarray") else np.asarray(x)


@torch.no_grad()
def evaluate(model: nn.Module, loader: DataLoader, y_true: np.ndarray, threshold: float = 0.5) -> Dict:
    model.eval()
    probs = []
    for xb, _ in loader:
        xb = xb.to(DEVICE)
        logits = model(xb)
        p = torch.sigmoid(logits).detach().cpu().numpy()
        probs.append(p)
    probs = np.concatenate(probs, axis=0)
    pred = (probs >= threshold).astype(int)

    return {
        "acc": float(accuracy_score(y_true, pred)),
        "f1": float(f1_score(y_true, pred)),
        "auc": float(roc_auc_score(y_true, probs)),
        "cm": confusion_matrix(y_true, pred),
    }


def save_checkpoint(path: str, model: nn.Module, optimizer: torch.optim.Optimizer,
                    epoch: int, best_auc: float, patience_counter: int) -> None:
    payload = {
        "epoch": epoch,
        "best_auc": best_auc,
        "patience_counter": patience_counter,
        "model_state": model.state_dict(),
        "optimizer_state": optimizer.state_dict(),
    }
    torch.save(payload, path)


def load_checkpoint(path: str, model: nn.Module, optimizer: torch.optim.Optimizer = None):
    ckpt = torch.load(path, map_location="cpu")
    model.load_state_dict(ckpt["model_state"])
    if optimizer is not None and "optimizer_state" in ckpt:
        optimizer.load_state_dict(ckpt["optimizer_state"])
    return ckpt


# =========================
# 2) Data
# =========================
class NPDataset(Dataset):
    def __init__(self, X_np: np.ndarray, y_np: np.ndarray):
        self.X = torch.from_numpy(X_np.astype(np.float32))
        self.y = torch.from_numpy(y_np.astype(np.float32))

    def __len__(self):
        return self.X.shape[0]

    def __getitem__(self, i):
        return self.X[i], self.y[i]


def build_preprocess(X: pd.DataFrame) -> ColumnTransformer:
    cat_cols = X.select_dtypes(include=["object"]).columns.tolist()
    num_cols = [c for c in X.columns if c not in cat_cols]

    numeric_pipe = Pipeline([
        ("imputer", SimpleImputer(strategy="median")),
        ("scaler", StandardScaler())
    ])
    categorical_pipe = Pipeline([
        ("imputer", SimpleImputer(strategy="most_frequent")),
        ("onehot", OneHotEncoder(handle_unknown="ignore"))
    ])

    preprocess = ColumnTransformer(
        transformers=[
            ("num", numeric_pipe, num_cols),
            ("cat", categorical_pipe, cat_cols),
        ],
        remainder="drop"
    )
    return preprocess


def load_and_prepare(cfg: Config):
    df = pd.read_excel(cfg.data_path)

    # 常见占位异常值 -> 缺失
    if "Current Loan Amount" in df.columns:
        df.loc[df["Current Loan Amount"] == 99999999, "Current Loan Amount"] = np.nan

    for c in cfg.drop_cols:
        if c in df.columns:
            df = df.drop(columns=[c])

    if cfg.target_col not in df.columns:
        raise ValueError(f"Target column '{cfg.target_col}' not found. Columns: {list(df.columns)}")

    y = df[cfg.target_col].astype(int).values
    X = df.drop(columns=[cfg.target_col])

    # split (70/15/15) stratify
    X_train, X_temp, y_train, y_temp = train_test_split(
        X, y, test_size=0.30, random_state=cfg.seed, stratify=y
    )
    X_val, X_test, y_val, y_test = train_test_split(
        X_temp, y_temp, test_size=0.50, random_state=cfg.seed, stratify=y_temp
    )

    preprocess = build_preprocess(X_train)
    X_train_t = to_dense(preprocess.fit_transform(X_train)).astype(np.float32)
    X_val_t = to_dense(preprocess.transform(X_val)).astype(np.float32)
    X_test_t = to_dense(preprocess.transform(X_test)).astype(np.float32)

    train_loader = DataLoader(NPDataset(X_train_t, y_train), batch_size=cfg.batch_size, shuffle=True)
    val_loader = DataLoader(NPDataset(X_val_t, y_val), batch_size=cfg.batch_size, shuffle=False)
    test_loader = DataLoader(NPDataset(X_test_t, y_test), batch_size=cfg.batch_size, shuffle=False)

    return preprocess, (X_train_t, y_train, train_loader), (X_val_t, y_val, val_loader), (X_test_t, y_test, test_loader)


# =========================
# 3) Model
# =========================
class MLP(nn.Module):
    def __init__(self, input_dim: int):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(input_dim, 256),
            nn.BatchNorm1d(256),
            nn.ReLU(),
            nn.Dropout(0.25),

            nn.Linear(256, 128),
            nn.BatchNorm1d(128),
            nn.ReLU(),
            nn.Dropout(0.20),

            nn.Linear(128, 64),
            nn.ReLU(),
            nn.Dropout(0.10),

            nn.Linear(64, 1)
        )

    def forward(self, x):
        return self.net(x).squeeze(1)


def make_loss(y_train: np.ndarray) -> nn.Module:
    pos = (y_train == 1).sum()
    neg = (y_train == 0).sum()
    pos_weight = torch.tensor([neg / max(pos, 1)], dtype=torch.float32, device=DEVICE)
    return nn.BCEWithLogitsLoss(pos_weight=pos_weight)


# =========================
# 4) Train loop with early stopping + checkpoint
# =========================
def train_with_early_stopping(
    model: nn.Module,
    optimizer: torch.optim.Optimizer,
    criterion: nn.Module,
    train_loader: DataLoader,
    val_loader: DataLoader,
    y_val: np.ndarray,
    max_epochs: int,
    patience: int,
    min_delta: float,
    ckpt_path: str,
    start_epoch: int = 0,
    best_auc_init: float = -1.0,
    patience_counter_init: int = 0,
) -> Dict:
    best_auc = best_auc_init
    patience_counter = patience_counter_init

    for epoch in range(start_epoch + 1, start_epoch + max_epochs + 1):
        model.train()
        losses = []

        for xb, yb in train_loader:
            xb = xb.to(DEVICE)
            yb = yb.to(DEVICE)

            optimizer.zero_grad()
            logits = model(xb)
            loss = criterion(logits, yb)
            loss.backward()
            nn.utils.clip_grad_norm_(model.parameters(), max_norm=5.0)
            optimizer.step()
            losses.append(loss.item())

        val_metrics = evaluate(model, val_loader, y_val, threshold=0.5)
        tr_loss = float(np.mean(losses))

        print(
            f"Epoch {epoch:03d} | loss={tr_loss:.4f} | "
            f"val_auc={val_metrics['auc']:.4f} val_f1={val_metrics['f1']:.4f} val_acc={val_metrics['acc']:.4f}"
        )

        improved = val_metrics["auc"] > (best_auc + min_delta)
        if improved:
            best_auc = val_metrics["auc"]
            patience_counter = 0
            save_checkpoint(ckpt_path, model, optimizer, epoch, best_auc, patience_counter)
        else:
            patience_counter += 1
            if patience_counter >= patience:
                print(f"Early stopping at epoch {epoch}. Best val AUC = {best_auc:.4f}")
                break

    return {
        "best_auc": best_auc,
        "patience_counter": patience_counter,
    }


def main():
    print(f"Using device: {DEVICE}")
    set_seed(CFG.seed)
    ensure_dir(CFG.artifacts_dir)

    preprocess, train_pack, val_pack, test_pack = load_and_prepare(CFG)
    _, y_train, train_loader = train_pack
    _, y_val, val_loader = val_pack
    _, y_test, test_loader = test_pack

    # Save preprocess (must!)
    preprocess_path = os.path.join(CFG.artifacts_dir, CFG.preprocess_file)
    joblib.dump(preprocess, preprocess_path)
    print(f"Saved preprocess: {preprocess_path}")

    input_dim = train_pack[0].shape[1]
    model = MLP(input_dim).to(DEVICE)

    criterion = make_loss(y_train)
    optimizer = torch.optim.AdamW(model.parameters(), lr=CFG.lr, weight_decay=CFG.weight_decay)

    ckpt_path = os.path.join(CFG.artifacts_dir, CFG.checkpoint_file)

    # -------------------------
    # Stage 1: Train then save best checkpoint
    # -------------------------
    print("\n===== Stage 1: Train & Save Weights =====")
    stage1_state = train_with_early_stopping(
        model=model,
        optimizer=optimizer,
        criterion=criterion,
        train_loader=train_loader,
        val_loader=val_loader,
        y_val=y_val,
        max_epochs=CFG.stage1_max_epochs,
        patience=CFG.patience,
        min_delta=CFG.min_delta,
        ckpt_path=ckpt_path,
        start_epoch=0,
        best_auc_init=-1.0,
        patience_counter_init=0,
    )

    # -------------------------
    # Stage 2: Load weights and continue training up to 50 epochs with early stopping
    # -------------------------
    print("\n===== Stage 2: Resume from Checkpoint & Continue 50 Epochs (Early Stop) =====")
    # 重新构建 optimizer(也可以沿用),然后从 checkpoint 恢复
    optimizer2 = torch.optim.AdamW(model.parameters(), lr=CFG.lr, weight_decay=CFG.weight_decay)

    if os.path.exists(ckpt_path):
        ckpt = load_checkpoint(ckpt_path, model, optimizer2)
        start_epoch = int(ckpt.get("epoch", 0))
        best_auc = float(ckpt.get("best_auc", -1.0))
        # 第二阶段通常"重新计数 early stop",更符合"继续训练50轮并早停"
        patience_counter = 0
        print(f"Loaded checkpoint from epoch={start_epoch}, best_val_auc={best_auc:.4f}")
    else:
        # 没有 checkpoint 就从当前模型接着训练
        start_epoch = 0
        best_auc = stage1_state["best_auc"]
        patience_counter = 0
        print("Checkpoint not found, continuing from current weights.")

    _ = train_with_early_stopping(
        model=model,
        optimizer=optimizer2,
        criterion=criterion,
        train_loader=train_loader,
        val_loader=val_loader,
        y_val=y_val,
        max_epochs=CFG.stage2_max_epochs,   # <= 关键:最多继续50轮
        patience=CFG.patience,
        min_delta=CFG.min_delta,
        ckpt_path=ckpt_path,               # 持续覆盖保存"best checkpoint"
        start_epoch=start_epoch,
        best_auc_init=best_auc,
        patience_counter_init=patience_counter,
    )

    # 最终评估:加载 best checkpoint 再测 test(避免最后几轮变差)
    if os.path.exists(ckpt_path):
        _ = load_checkpoint(ckpt_path, model, optimizer=None)

    test_metrics = evaluate(model, test_loader, y_test, threshold=0.5)
    print("\n=== Test Metrics (Best Checkpoint) ===")
    print(f"Accuracy: {test_metrics['acc']:.4f}")
    print(f"F1      : {test_metrics['f1']:.4f}")
    print(f"ROC-AUC  : {test_metrics['auc']:.4f}")
    print("Confusion Matrix:\n", test_metrics["cm"])

    # 保存最终权重(可选:保存 best checkpoint 已经足够)
    final_path = os.path.join(CFG.artifacts_dir, CFG.final_weights_file)
    torch.save(model.state_dict(), final_path)
    print(f"\nSaved final weights: {final_path}")
    print(f"Best checkpoint: {ckpt_path}")


if __name__ == "__main__":
    main()
相关推荐
盼哥PyAI实验室2 小时前
Python 爬虫核心基础:请求与响应机制全解析(从 GET 请求到 JSON 分页实战)
爬虫·python·json
Tipriest_2 小时前
Python 常用特殊变量与关键字详解
linux·python·关键字·特殊变量
Salt_07282 小时前
DAY 41 Dataset 和 Dataloader 类
python·算法·机器学习
无心水2 小时前
【神经风格迁移:多风格】17、AIGC+风格迁移:用Stable Diffusion生成自定义风格
人工智能·机器学习·语言模型·stable diffusion·aigc·机器翻译·vgg
yousuotu2 小时前
基于 Python 实现亚马逊销售数据可视化分析
python·数据集
倔强的石头1062 小时前
昇腾大模型量化实战:ModelSlim 工具上手与 W8A8 精度优化全流程解析
人工智能·机器学习
被遗忘的旋律.2 小时前
TCP模型复现《Trajectory-guided Control Prediction for End-to-end Autonomous Driving》
深度学习·机器学习·自动驾驶
yy我不解释2 小时前
关于comfyui的token顺序打乱(三)
python·ai作画·flask·状态模式·comfyui
山沐与山2 小时前
【设计模式】Python策略模式:从入门到实战
python·设计模式·策略模式