pythonstudy Day41

早停策略和模型权重的保存

@疏锦行

clike 复制代码
import os
import random
from dataclasses import dataclass
from typing import Dict, Tuple

import numpy as np
import pandas as pd

import joblib
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, confusion_matrix


# =========================
# 0) Config
# =========================
@dataclass
class Config:
    data_path: str = "data.xlsx"
    target_col: str = "Credit Default"
    drop_cols: Tuple[str, ...] = ("Id",)

    seed: int = 42
    batch_size: int = 256

    # Stage 1 training
    stage1_max_epochs: int = 30

    # Stage 2 training (resume)
    stage2_max_epochs: int = 50

    # Early stopping
    patience: int = 8
    min_delta: float = 1e-4

    # Optimization
    lr: float = 1e-3
    weight_decay: float = 1e-4

    # Artifacts
    artifacts_dir: str = "artifacts"
    preprocess_file: str = "preprocess.joblib"
    checkpoint_file: str = "checkpoint_best.pt"
    final_weights_file: str = "model_final.pt"


CFG = Config()
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"


# =========================
# 1) Utils
# =========================
def set_seed(seed: int) -> None:
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


def ensure_dir(path: str) -> None:
    os.makedirs(path, exist_ok=True)


def to_dense(x):
    return x.toarray() if hasattr(x, "toarray") else np.asarray(x)


@torch.no_grad()
def evaluate(model: nn.Module, loader: DataLoader, y_true: np.ndarray, threshold: float = 0.5) -> Dict:
    model.eval()
    probs = []
    for xb, _ in loader:
        xb = xb.to(DEVICE)
        logits = model(xb)
        p = torch.sigmoid(logits).detach().cpu().numpy()
        probs.append(p)
    probs = np.concatenate(probs, axis=0)
    pred = (probs >= threshold).astype(int)

    return {
        "acc": float(accuracy_score(y_true, pred)),
        "f1": float(f1_score(y_true, pred)),
        "auc": float(roc_auc_score(y_true, probs)),
        "cm": confusion_matrix(y_true, pred),
    }


def save_checkpoint(path: str, model: nn.Module, optimizer: torch.optim.Optimizer,
                    epoch: int, best_auc: float, patience_counter: int) -> None:
    payload = {
        "epoch": epoch,
        "best_auc": best_auc,
        "patience_counter": patience_counter,
        "model_state": model.state_dict(),
        "optimizer_state": optimizer.state_dict(),
    }
    torch.save(payload, path)


def load_checkpoint(path: str, model: nn.Module, optimizer: torch.optim.Optimizer = None):
    ckpt = torch.load(path, map_location="cpu")
    model.load_state_dict(ckpt["model_state"])
    if optimizer is not None and "optimizer_state" in ckpt:
        optimizer.load_state_dict(ckpt["optimizer_state"])
    return ckpt


# =========================
# 2) Data
# =========================
class NPDataset(Dataset):
    def __init__(self, X_np: np.ndarray, y_np: np.ndarray):
        self.X = torch.from_numpy(X_np.astype(np.float32))
        self.y = torch.from_numpy(y_np.astype(np.float32))

    def __len__(self):
        return self.X.shape[0]

    def __getitem__(self, i):
        return self.X[i], self.y[i]


def build_preprocess(X: pd.DataFrame) -> ColumnTransformer:
    cat_cols = X.select_dtypes(include=["object"]).columns.tolist()
    num_cols = [c for c in X.columns if c not in cat_cols]

    numeric_pipe = Pipeline([
        ("imputer", SimpleImputer(strategy="median")),
        ("scaler", StandardScaler())
    ])
    categorical_pipe = Pipeline([
        ("imputer", SimpleImputer(strategy="most_frequent")),
        ("onehot", OneHotEncoder(handle_unknown="ignore"))
    ])

    preprocess = ColumnTransformer(
        transformers=[
            ("num", numeric_pipe, num_cols),
            ("cat", categorical_pipe, cat_cols),
        ],
        remainder="drop"
    )
    return preprocess


def load_and_prepare(cfg: Config):
    df = pd.read_excel(cfg.data_path)

    # 常见占位异常值 -> 缺失
    if "Current Loan Amount" in df.columns:
        df.loc[df["Current Loan Amount"] == 99999999, "Current Loan Amount"] = np.nan

    for c in cfg.drop_cols:
        if c in df.columns:
            df = df.drop(columns=[c])

    if cfg.target_col not in df.columns:
        raise ValueError(f"Target column '{cfg.target_col}' not found. Columns: {list(df.columns)}")

    y = df[cfg.target_col].astype(int).values
    X = df.drop(columns=[cfg.target_col])

    # split (70/15/15) stratify
    X_train, X_temp, y_train, y_temp = train_test_split(
        X, y, test_size=0.30, random_state=cfg.seed, stratify=y
    )
    X_val, X_test, y_val, y_test = train_test_split(
        X_temp, y_temp, test_size=0.50, random_state=cfg.seed, stratify=y_temp
    )

    preprocess = build_preprocess(X_train)
    X_train_t = to_dense(preprocess.fit_transform(X_train)).astype(np.float32)
    X_val_t = to_dense(preprocess.transform(X_val)).astype(np.float32)
    X_test_t = to_dense(preprocess.transform(X_test)).astype(np.float32)

    train_loader = DataLoader(NPDataset(X_train_t, y_train), batch_size=cfg.batch_size, shuffle=True)
    val_loader = DataLoader(NPDataset(X_val_t, y_val), batch_size=cfg.batch_size, shuffle=False)
    test_loader = DataLoader(NPDataset(X_test_t, y_test), batch_size=cfg.batch_size, shuffle=False)

    return preprocess, (X_train_t, y_train, train_loader), (X_val_t, y_val, val_loader), (X_test_t, y_test, test_loader)


# =========================
# 3) Model
# =========================
class MLP(nn.Module):
    def __init__(self, input_dim: int):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(input_dim, 256),
            nn.BatchNorm1d(256),
            nn.ReLU(),
            nn.Dropout(0.25),

            nn.Linear(256, 128),
            nn.BatchNorm1d(128),
            nn.ReLU(),
            nn.Dropout(0.20),

            nn.Linear(128, 64),
            nn.ReLU(),
            nn.Dropout(0.10),

            nn.Linear(64, 1)
        )

    def forward(self, x):
        return self.net(x).squeeze(1)


def make_loss(y_train: np.ndarray) -> nn.Module:
    pos = (y_train == 1).sum()
    neg = (y_train == 0).sum()
    pos_weight = torch.tensor([neg / max(pos, 1)], dtype=torch.float32, device=DEVICE)
    return nn.BCEWithLogitsLoss(pos_weight=pos_weight)


# =========================
# 4) Train loop with early stopping + checkpoint
# =========================
def train_with_early_stopping(
    model: nn.Module,
    optimizer: torch.optim.Optimizer,
    criterion: nn.Module,
    train_loader: DataLoader,
    val_loader: DataLoader,
    y_val: np.ndarray,
    max_epochs: int,
    patience: int,
    min_delta: float,
    ckpt_path: str,
    start_epoch: int = 0,
    best_auc_init: float = -1.0,
    patience_counter_init: int = 0,
) -> Dict:
    best_auc = best_auc_init
    patience_counter = patience_counter_init

    for epoch in range(start_epoch + 1, start_epoch + max_epochs + 1):
        model.train()
        losses = []

        for xb, yb in train_loader:
            xb = xb.to(DEVICE)
            yb = yb.to(DEVICE)

            optimizer.zero_grad()
            logits = model(xb)
            loss = criterion(logits, yb)
            loss.backward()
            nn.utils.clip_grad_norm_(model.parameters(), max_norm=5.0)
            optimizer.step()
            losses.append(loss.item())

        val_metrics = evaluate(model, val_loader, y_val, threshold=0.5)
        tr_loss = float(np.mean(losses))

        print(
            f"Epoch {epoch:03d} | loss={tr_loss:.4f} | "
            f"val_auc={val_metrics['auc']:.4f} val_f1={val_metrics['f1']:.4f} val_acc={val_metrics['acc']:.4f}"
        )

        improved = val_metrics["auc"] > (best_auc + min_delta)
        if improved:
            best_auc = val_metrics["auc"]
            patience_counter = 0
            save_checkpoint(ckpt_path, model, optimizer, epoch, best_auc, patience_counter)
        else:
            patience_counter += 1
            if patience_counter >= patience:
                print(f"Early stopping at epoch {epoch}. Best val AUC = {best_auc:.4f}")
                break

    return {
        "best_auc": best_auc,
        "patience_counter": patience_counter,
    }


def main():
    print(f"Using device: {DEVICE}")
    set_seed(CFG.seed)
    ensure_dir(CFG.artifacts_dir)

    preprocess, train_pack, val_pack, test_pack = load_and_prepare(CFG)
    _, y_train, train_loader = train_pack
    _, y_val, val_loader = val_pack
    _, y_test, test_loader = test_pack

    # Save preprocess (must!)
    preprocess_path = os.path.join(CFG.artifacts_dir, CFG.preprocess_file)
    joblib.dump(preprocess, preprocess_path)
    print(f"Saved preprocess: {preprocess_path}")

    input_dim = train_pack[0].shape[1]
    model = MLP(input_dim).to(DEVICE)

    criterion = make_loss(y_train)
    optimizer = torch.optim.AdamW(model.parameters(), lr=CFG.lr, weight_decay=CFG.weight_decay)

    ckpt_path = os.path.join(CFG.artifacts_dir, CFG.checkpoint_file)

    # -------------------------
    # Stage 1: Train then save best checkpoint
    # -------------------------
    print("\n===== Stage 1: Train & Save Weights =====")
    stage1_state = train_with_early_stopping(
        model=model,
        optimizer=optimizer,
        criterion=criterion,
        train_loader=train_loader,
        val_loader=val_loader,
        y_val=y_val,
        max_epochs=CFG.stage1_max_epochs,
        patience=CFG.patience,
        min_delta=CFG.min_delta,
        ckpt_path=ckpt_path,
        start_epoch=0,
        best_auc_init=-1.0,
        patience_counter_init=0,
    )

    # -------------------------
    # Stage 2: Load weights and continue training up to 50 epochs with early stopping
    # -------------------------
    print("\n===== Stage 2: Resume from Checkpoint & Continue 50 Epochs (Early Stop) =====")
    # 重新构建 optimizer(也可以沿用),然后从 checkpoint 恢复
    optimizer2 = torch.optim.AdamW(model.parameters(), lr=CFG.lr, weight_decay=CFG.weight_decay)

    if os.path.exists(ckpt_path):
        ckpt = load_checkpoint(ckpt_path, model, optimizer2)
        start_epoch = int(ckpt.get("epoch", 0))
        best_auc = float(ckpt.get("best_auc", -1.0))
        # 第二阶段通常"重新计数 early stop",更符合"继续训练50轮并早停"
        patience_counter = 0
        print(f"Loaded checkpoint from epoch={start_epoch}, best_val_auc={best_auc:.4f}")
    else:
        # 没有 checkpoint 就从当前模型接着训练
        start_epoch = 0
        best_auc = stage1_state["best_auc"]
        patience_counter = 0
        print("Checkpoint not found, continuing from current weights.")

    _ = train_with_early_stopping(
        model=model,
        optimizer=optimizer2,
        criterion=criterion,
        train_loader=train_loader,
        val_loader=val_loader,
        y_val=y_val,
        max_epochs=CFG.stage2_max_epochs,   # <= 关键:最多继续50轮
        patience=CFG.patience,
        min_delta=CFG.min_delta,
        ckpt_path=ckpt_path,               # 持续覆盖保存"best checkpoint"
        start_epoch=start_epoch,
        best_auc_init=best_auc,
        patience_counter_init=patience_counter,
    )

    # 最终评估:加载 best checkpoint 再测 test(避免最后几轮变差)
    if os.path.exists(ckpt_path):
        _ = load_checkpoint(ckpt_path, model, optimizer=None)

    test_metrics = evaluate(model, test_loader, y_test, threshold=0.5)
    print("\n=== Test Metrics (Best Checkpoint) ===")
    print(f"Accuracy: {test_metrics['acc']:.4f}")
    print(f"F1      : {test_metrics['f1']:.4f}")
    print(f"ROC-AUC  : {test_metrics['auc']:.4f}")
    print("Confusion Matrix:\n", test_metrics["cm"])

    # 保存最终权重(可选:保存 best checkpoint 已经足够)
    final_path = os.path.join(CFG.artifacts_dir, CFG.final_weights_file)
    torch.save(model.state_dict(), final_path)
    print(f"\nSaved final weights: {final_path}")
    print(f"Best checkpoint: {ckpt_path}")


if __name__ == "__main__":
    main()
相关推荐
亚里随笔10 分钟前
超越LoRA:参数高效强化学习方法的全面评估与突破
人工智能·深度学习·机器学习·lora·rl
computersciencer21 分钟前
机器学习入门:什么是机器学习
人工智能·机器学习
副露のmagic23 分钟前
更弱智的算法学习 day34
python·学习
AllFiles28 分钟前
用Python turtle画出标准五星红旗,原来国旗绘制有这么多数学奥秘!
python
Java后端的Ai之路29 分钟前
【机器学习】- CatBoost模型参数详细说明
人工智能·机器学习·catboost·模型参数
亲爱的非洲野猪33 分钟前
Java线程池深度解析:从原理到最佳实践
java·网络·python
用户1377940499931 小时前
基于遗传算法实现自动泊车+pygame可视化
python
4***17541 小时前
强化学习中的蒙特卡洛方法
python
pen-ai1 小时前
打通 Python 与 C++ 的参数传递机制
开发语言·c++·python
至此流年莫相忘1 小时前
Python之深拷贝和浅拷贝
python