一、架构设计图

二、实现原理框图

三、常见使用场景
场景1:大语言模型(LLM)服务化
python
# 企业知识问答系统
# 医疗诊断辅助
# 法律文档分析
# 客服聊天机器人
场景2:多模态AI应用
python
# 图像生成(Stable Diffusion)
# 视频理解与分析
# 语音识别与合成
# 文档OCR识别
场景3:批处理推理流水线
python
# 电商商品标注
# 金融风控分析
# 社交媒体内容审核
# 科研数据处理
场景4:边缘AI部署
cpp
# 智能摄像头分析
# 工厂质检系统
# 自动驾驶推理
# IoT设备智能分析
四、完整 Demo 演示
Demo:构建和部署情感分析服务
步骤1:安装 Lepton AI SDK
bash
pip install leptonai
步骤2:创建情感分析 Photon
python
# sentiment_analyzer.py
from typing import Dict, Any
from transformers import pipeline
from leptonai import Photon, handler
class SentimentAnalyzer(Photon):
"""
情感分析服务 - 支持中英文文本情感分析
"""
# 定义依赖
requirement_dependencies = ["torch", "transformers"]
def init(self):
"""初始化模型"""
# 加载预训练模型
self.analyzer = pipeline(
"sentiment-analysis",
model="distilbert-base-uncased-finetuned-sst-2-english",
device=-1 # -1 for CPU, 0 for GPU
)
# 中文情感分析模型
self.zh_analyzer = pipeline(
"text-classification",
model="bert-base-chinese",
device=-1
)
@handler("analyze")
def analyze_sentiment(self, text: str, language: str = "en") -> Dict[str, Any]:
"""
分析文本情感
Args:
text: 待分析文本
language: 语言 (en/zh)
Returns:
情感分析结果
"""
if language == "zh":
result = self.zh_analyzer(text)
else:
result = self.analyzer(text)
return {
"text": text,
"sentiment": result[0]['label'],
"confidence": float(result[0]['score']),
"language": language,
"timestamp": self._get_timestamp()
}
@handler("batch_analyze", method="POST")
def batch_analyze(self, texts: list, language: str = "en") -> Dict[str, Any]:
"""批量分析"""
results = []
for text in texts:
results.append(self.analyze_sentiment(text, language))
return {
"total": len(results),
"results": results,
"positive_count": sum(1 for r in results if r['sentiment'].lower() in ['positive', '积极']),
"negative_count": sum(1 for r in results if r['sentiment'].lower() in ['negative', '消极'])
}
def _get_timestamp(self):
from datetime import datetime
return datetime.now().isoformat()
if __name__ == "__main__":
# 本地测试
photon = SentimentAnalyzer()
# 测试单个分析
result = photon.analyze_sentiment("I love this product! It's amazing!")
print(f"测试结果: {result}")
步骤3:本地测试运行
python
# 保存为 sentiment_analyzer.py 后运行
lep photon run -n sentiment -m sentiment_analyzer.py
# 或者使用Python直接运行
python -c "
from sentiment_analyzer import SentimentAnalyzer
photon = SentimentAnalyzer()
print(photon.analyze_sentiment('This is absolutely wonderful!'))
"
步骤4:打包为 Photon
python
# 创建 photon 配置
lep photon create -n sentiment-analyzer -m sentiment_analyzer.py
# 查看创建的 photon
lep photon list
# 本地运行 photon
lep photon run -n sentiment-analyzer --local
步骤5:部署到 Lepton Cloud
python
# 登录到 Lepton AI
lep login
# 推送到云端仓库
lep photon push sentiment-analyzer
# 部署为在线服务
lep deployment create sentiment-service \
--model-name sentiment-analyzer \
--resource-shape gpu.t4 # 使用 T4 GPU
--min-replicas 1 \
--max-replicas 5 \
--auto-scaling-by-requests=100 # 每副本处理100个请求后扩容
# 查看部署状态
lep deployment status sentiment-service
步骤6:使用 Python SDK 调用服务
python
# client_demo.py
from leptonai import Client
import json
# 连接到部署的服务
client = Client(
endpoint="https://sentiment-service.lepton.ai",
token="your-api-token" # 从控制台获取
)
# 单条分析
result = client.analyze(
text="The movie was fantastic with great acting!",
language="en"
)
print("单条分析结果:")
print(json.dumps(result, indent=2))
# 批量分析
batch_result = client.batch_analyze(
texts=[
"I'm so happy today!",
"This is terrible and awful.",
"It's okay, nothing special.",
"Absolutely magnificent experience!"
]
)
print("\n批量分析结果:")
print(json.dumps(batch_result, indent=2))
# 使用中文分析
chinese_result = client.analyze(
text="这部电影真是太精彩了,演员表演出色!",
language="zh"
)
print("\n中文分析结果:")
print(json.dumps(chinese_result, indent=2))
步骤7:使用 HTTP API 调用
bash
# 获取 API 端点
lep deployment status sentiment-service --show-endpoint
# 使用 curl 调用
curl -X POST \
https://sentiment-service.lepton.ai/analyze \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_TOKEN" \
-d '{
"text": "The service is incredibly fast and reliable!",
"language": "en"
}'
# 批量请求
curl -X POST \
https://sentiment-service.lepton.ai/batch_analyze \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_TOKEN" \
-d '{
"texts": [
"Excellent product quality",
"Poor customer service",
"Average experience"
],
"language": "en"
}'
步骤8:监控和管理
bash
# 查看服务日志
lep deployment logs sentiment-service
# 查看资源使用情况
lep deployment status sentiment-service --show-resources
# 扩缩容调整
lep deployment update sentiment-service --min-replicas 2 --max-replicas 10
# 更新模型版本
lep deployment update sentiment-service --model-version v2.0
# 删除部署
lep deployment delete sentiment-service
步骤9:进阶功能 - 创建 Web 界面
python
# web_ui.py
import streamlit as st
import requests
import json
st.set_page_config(page_title="情感分析平台", page_icon="😊")
st.title("📊 智能情感分析平台")
st.markdown("使用AI模型分析文本情感倾向")
# 侧边栏配置
with st.sidebar:
st.header("配置")
api_endpoint = st.text_input(
"API端点",
value="https://sentiment-service.lepton.ai"
)
api_token = st.text_input("API Token", type="password")
language = st.selectbox("语言", ["en", "zh"])
st.divider()
st.markdown("### 批量处理")
batch_mode = st.checkbox("启用批量分析")
st.divider()
st.markdown("### 关于")
st.info("基于Lepton AI平台构建的情感分析服务")
# 主界面
tab1, tab2, tab3 = st.tabs(["单条分析", "批量分析", "历史记录"])
with tab1:
st.subheader("单文本情感分析")
text_input = st.text_area(
"输入待分析文本",
height=150,
placeholder="请输入要分析的文本..."
)
if st.button("开始分析", type="primary"):
if text_input.strip():
try:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_token}"
}
payload = {
"text": text_input,
"language": language
}
response = requests.post(
f"{api_endpoint}/analyze",
headers=headers,
json=payload
)
if response.status_code == 200:
result = response.json()
# 显示结果
col1, col2, col3 = st.columns(3)
with col1:
sentiment = result['sentiment']
if sentiment.lower() in ['positive', '积极']:
st.metric("情感倾向", "积极", delta="正向",
delta_color="normal")
else:
st.metric("情感倾向", "消极", delta="负向",
delta_color="inverse")
with col2:
confidence = result['confidence']
st.metric("置信度", f"{confidence:.2%}")
with col3:
st.metric("语言", result['language'].upper())
# 显示详细结果
with st.expander("查看详细结果"):
st.json(result)
else:
st.error(f"请求失败: {response.text}")
except Exception as e:
st.error(f"发生错误: {str(e)}")
else:
st.warning("请输入文本内容")
with tab2:
st.subheader("批量文本分析")
uploaded_file = st.file_uploader(
"上传文本文件(每行一个文本)",
type=['txt', 'csv']
)
sample_texts = st.text_area(
"或直接输入多个文本(每行一个)",
height=200,
help="每行输入一个待分析的文本"
)
if st.button("批量分析", type="primary"):
texts = []
if uploaded_file is not None:
content = uploaded_file.getvalue().decode("utf-8")
texts = [line.strip() for line in content.split('\n') if line.strip()]
elif sample_texts:
texts = [line.strip() for line in sample_texts.split('\n') if line.strip()]
if texts:
try:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_token}"
}
payload = {
"texts": texts,
"language": language
}
with st.spinner("分析中..."):
response = requests.post(
f"{api_endpoint}/batch_analyze",
headers=headers,
json=payload
)
if response.status_code == 200:
result = response.json()
# 显示统计信息
col1, col2, col3 = st.columns(3)
with col1:
st.metric("总文本数", result['total'])
with col2:
st.metric("积极数", result['positive_count'])
with col3:
st.metric("消极数", result['negative_count'])
# 显示详细结果表格
st.subheader("分析结果详情")
import pandas as pd
df = pd.DataFrame(result['results'])
st.dataframe(df)
# 可视化
st.subheader("情感分布")
import plotly.express as px
fig = px.pie(
values=[result['positive_count'], result['negative_count']],
names=['积极', '消极'],
title="情感分布比例"
)
st.plotly_chart(fig)
else:
st.error(f"批量分析失败: {response.text}")
except Exception as e:
st.error(f"发生错误: {str(e)}")
else:
st.warning("请上传文件或输入文本")
with tab3:
st.subheader("分析历史")
st.info("此功能需要后端存储支持,可根据需求扩展")
if __name__ == "__main__":
# 运行Streamlit应用
# streamlit run web_ui.py
pass
步骤10:创建 Docker Compose 本地部署
python
# docker-compose.yml
version: '3.8'
services:
lepton-local:
image: leptonai/lepton:latest
container_name: lepton-local
ports:
- "8080:8080"
- "8081:8081"
environment:
- LEPTON_ENV=local
- LEPTON_STORAGE=/data
volumes:
- ./data:/data
- ./photon_cache:/cache
restart: unless-stopped
networks:
- lepton-network
sentiment-service:
build:
context: .
dockerfile: Dockerfile.sentiment
container_name: sentiment-service
ports:
- "5000:5000"
environment:
- MODEL_CACHE_DIR=/cache
- MAX_WORKERS=4
volumes:
- ./model_cache:/cache
depends_on:
- lepton-local
networks:
- lepton-network
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
networks:
lepton-network:
driver: bridge
五、关键优势总结
1. 开发效率
-
从代码到服务仅需几分钟
-
本地开发与云端部署一致
-
丰富的预构建模型模板
2. 运维简化
-
自动扩缩容
-
集成监控告警
-
版本管理无缝
3. 成本优化
-
按实际使用量计费
-
GPU资源共享
-
冷启动优化
4. 企业级特性
-
多租户支持
-
数据安全合规
-
私有化部署支持
六、最佳实践建议
-
模型优化
-
使用量化技术减少模型大小
-
实现请求批处理提高吞吐量
-
添加缓存层减少重复计算
-
-
部署策略
-
根据流量模式设置合适的副本数
-
使用蓝绿部署进行版本更新
-
设置合理的资源限制
-
-
监控告警
-
监控QPS、延迟、错误率
-
设置GPU利用率告警
-
记录详细的访问日志
-
这个完整的Demo展示了Lepton AI平台从开发、部署到使用的全流程。您可以根据实际需求调整模型、配置和部署方式。