分形生成实验:在有限上下文中构建可组合的强类型单元

在上一篇文章当大模型替我们写完整个系统,开发者还剩下什么?中提到了"分形"实验。

在深入实验设计前,有必要回溯一个关键范式转移:强类型系统曾是大型IT系统的可靠性基石。上世纪末至本世纪初,C、Java等语言凭借编译时类型检查,支撑了金融、电信等对稳定性要求极高的系统;而近十年,Python、JavaScript等动态语言的流行,则是以弱化类型约束为代价,显著降低了人类开发者的心智负担,提升了迭代速度------这是一种在"人力成本"与"系统风险"之间的权衡。

但当编码主体从人变为AI,这一权衡被彻底重构。AI不会因泛型或接口定义而"困惑",却极易在类型模糊的上下文中生成不一致的逻辑。此时,TypeScript的强类型系统不再是开发者的障碍,反而成为约束AI行为、保障模块间契约稳固的最佳基础设施。正因如此,我们将强类型作为"分形生成实验"的核心支柱。

核心设计
  1. 公共约束层(shared/

    • types/:定义全局实体(如 User)、模块基类(如 BaseModuleState<T>)、事件载荷(如 OrderCreatedEvent);
    • dataflow/:声明模块间数据流拓扑(如 "用户模块 → 订单模块:传递 userId: string");
    • 所有内容由人工编写,禁止AI修改,作为系统"基因"。
  2. 分形单元生成规则

    • 每个单元(如 feature/user/)仅接收:
      • 本单元需求片段;
      • 公共约束引用路径(如 ../../shared/types)。
    • AI必须:
      • 继承公共类型(如 UserModuleState extends BaseModuleState<{ profile: UserProfile }>);
      • 遵守数据流规范(如调用 emit('user-updated', { userId }) 时,userId 类型必须匹配 shared/types 中定义);
      • 通过 tsc --noEmit 校验后方可提交。
  3. 组装与验证

    • 自动化脚本按 shared/dataflow/ 中的拓扑图拼装单元;
    • 端到端测试验证跨模块数据流是否符合类型契约。
为何强类型不可或缺?
  • 编译即验证:类型断裂在生成后立即暴露,避免运行时"黑盒错误";
  • 关系显式化:模块依赖通过类型引用而非文档注释表达,确保AI生成逻辑与架构意图一致;
  • 上下文解耦:每个单元只需理解自身需求+公共类型,无需知晓其他单元实现细节。

此实验的本质,是在承认大模型"局部视野"局限的前提下,用强类型契约将"有限上下文生成"转化为"全局一致构建"


欢迎私信,展开更多智能体开发方面的合作与讨论

📩 联系方式 :请通过 CSDN 私信或项目原仓库(cli_assistant)留言,我会尽快与你联系。

相关推荐
weixin_39757802几秒前
LLM应用开发七:Agent进阶
人工智能
谢的2元王国9 分钟前
这是跑通实用rag的日志记录 重点关注一点 句子向量化模型的选择 以及召回结果后 重排交叉编码的精进
人工智能·深度学习
LeapMay11 分钟前
AdaWorld: Learning Adaptable World Models with Latent Actions(ICML 2025)
人工智能
蝎蟹居18 分钟前
GBT 4706.1-2024逐句解读系列(26) 第7.6条款:正确使用符号标识
人工智能·单片机·嵌入式硬件·物联网·安全
这张生成的图像能检测吗18 分钟前
(论文速读)轴向变压器
人工智能·计算机视觉·注意力机制
GISer_Jing25 分钟前
AI Agent 智能体的“深度思考”与“安全防线”
人工智能·学习·安全·aigc
Coco恺撒1 小时前
【脑机接口+人工智能】阔别三载,温暖归来
人工智能·经验分享·神经网络·人机交互·创业创新·学习方法
冰西瓜6001 小时前
从项目入手机器学习——(三)数据预处理(下)自动编码器
人工智能·机器学习
Blossom.1181 小时前
AI Agent的长期记忆革命:基于向量遗忘曲线的动态压缩系统
运维·人工智能·python·深度学习·自动化·prompt·知识图谱
_codemonster1 小时前
计算机视觉入门到实战系列(十六)基于空间约束的k-means图像分割
人工智能·计算机视觉·kmeans