小模型驱动大智能:NVIDIA 新研究实现 2.5 倍效率提升,成本直降 70%

小模型驱动大智能:NVIDIA 新研究实现 2.5 倍效率提升,成本直降 70%

论文标题:ToolOrchestra: Elevating Intelligence via Efficient Model and Tool Orchestration

作者团队:英伟达、香港大学

发布时间:2025 年 11 月 27 日

👉 一键直达论文

👉Lab4AI 大模型实验室论文阅读

⭐ 论文简介

大语言模型在解决深度复杂问题时面临计算成本高、推理能力不足的挑战;现有工具代理多依赖单一强大模型,缺乏对"工具编排"的系统性优化,导致效率与成本难以平衡。

这篇论文解决的是,训练一个小型语言模型(Orchestrator) 作为编排器,动态协调多种工具(基础工具、专业 LLMs、通用 LLMs),通过强化学习优化任务完成效果。

⭐ 核心创新

论文核心是训练一个小型语言模型作为"编排器",通过强化学习让小模型学会 "何时调用、调用什么、如何组合" 工具,实现 "以小控大、降本增效"。

该方法将多工具任务建模为马尔可夫决策过程,编排器通过"多轮滚动"交替执行"推理"和"工具调用",逐步完成任务。

奖励设计包含三重目标:结果正确性(任务是否解决)、效率(成本与延迟)、用户偏好(工具选择倾向),引导模型平衡性能与成本,适配用户需求。

为支持训练,论文还提出了 ToolScale 数据集,通过模拟工具环境与生成多样化任务,解决端到端 RL 训练的数据稀缺问题。

⭐ 论文的贡献

  • 提出"编排范式",用小型模型协调工具实现"性能 - 成本"最优;
  • 发布 ToolScale 数据集,推动工具代理研究;
  • 证明小型编排模型在复杂任务上可超越大模型,为低成本、可扩展的 AI 系统提供新思路。
相关推荐
编码小哥2 小时前
OpenCV Haar级联分类器:人脸检测入门
人工智能·计算机视觉·目标跟踪
程序员:钧念2 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路3 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
Chef_Chen3 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗3 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
KG_LLM图谱增强大模型4 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
JicasdC123asd4 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白5 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
小程故事多_805 小时前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc
琅琊榜首20205 小时前
AI+编程双驱动:高质量短剧创作全流程指南
人工智能