腾讯翻译大模型,手机可运行

大家好,我是 Ai 学习的老章

2025 年最后一天,腾讯开源了 HY-MT1.5 翻译大模型!

简介

HY-MT1.5(Hunyuan Translation Model Version 1.5)是腾讯混元团队推出的专业翻译大模型,包含两个版本:

  • HY-MT1.5-1.8B:18 亿参数的轻量级版本
  • HY-MT1.5-7B:70 亿参数的完整版

这两款模型主打一个 "又快又准" :支持 33 种语言 的互译,还额外覆盖了 5 种民族语言和方言。最牛的是,1.8B 的小模型翻译质量居然能逼近 7B 大模型,"小钢炮"属性拉满。

外链图片转存中...(img-WTJUiCxq-1767539031275)

核心亮点

1.8B 轻量模型的逆袭:

  • 🏆 同尺寸行业第一:1.8B 模型在同参数规模中遥遥领先,甚至超越大多数商业翻译 API
  • 边缘设备友好:量化后可部署在端侧设备,支持实时翻译场景
  • 📊 性价比爆棚:参数量不到 7B 模型的三分之一,效果却几乎持平

7B 完整模型的全面升级:

  • 🎯 WMT25 冠军血统:基于世界机器翻译大赛冠军模型优化
  • 📝 混合场景增强:针对解释性翻译、中外混杂文本做了专门优化
  • 🔧 专业功能三件套:术语干预、上下文翻译、格式化翻译全支持

模型文件

腾讯提供了多种量化版本,满足不同场景需求:

模型名称 描述
HY-MT1.5-1.8B 混元 18 亿参数翻译模型
HY-MT1.5-1.8B-FP8 混元 18 亿参数翻译模型,fp8 量化
HY-MT1.5-1.8B-GPTQ-Int4 混元 18 亿参数翻译模型,int4 量化
HY-MT1.5-7B 混元 70 亿参数翻译模型
HY-MT1.5-7B-FP8 混元 70 亿参数翻译模型,fp8 量化
HY-MT1.5-7B-GPTQ-Int4 混元 70 亿参数翻译模型,int4 量化

FP8 原版只有 2.05GB,GPTQ-Int4 只有 1.34GB

快速上手

安装依赖
SHELL 复制代码
pip install transformers==4.56.0
使用 Transformers 推理
python 复制代码
from transformers import AutoModelForCausalLM, AutoTokenizer
import os

model_name_or_path = "tencent/HY-MT1.5-1.8B"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto")  # You may want to use bfloat16 and/or move to GPU here
messages = [
    {"role": "user", "content": "Translate the following segment into Chinese, without additional explanation.\n\nIt's on the house."},
]
tokenized_chat = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=False,
    return_tensors="pt"
)

outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=2048)
output_text = tokenizer.decode(outputs[0])

Prompt 模板

HY-MT1.5 提供了多种专业翻译场景的 Prompt 模板:

1. 中外互译(ZH <=> XX):

复制代码
将以下文本翻译为{target_language},注意只需要输出翻译后的结果,不要额外解释: {source_text}

2. 非中文互译(XX <=> XX):

复制代码
Translate the following segment into {target_language}, without additional explanation. {source_text}

3. 术语干预(专业领域必备):

复制代码
参考下面的翻译: {source_term} 翻译成 {target_term} 将以下文本翻译为{target_language},注意只需要输出翻译后的结果,不要额外解释: {source_text}

4. 上下文翻译(保持语境一致):

复制代码
{context} 参考上面的信息,把下面的文本翻译成{target_language},注意不需要翻译上文,也不要额外解释: {source_text}

5. 格式化翻译(保留标签信息):

复制代码
将以下<source></source>之间的文本翻译为中文,注意只需要输出翻译后的结果,不要额外解释,原文中的<sn></sn>标签表示标签内文本包含格式信息,需要在译文中相应的位置尽量保留该标签。输出格式为:<target>str</target> <source>{src_text_with_format}</source>

本地部署

主流推理引擎都支持(TensorRT-LLM、SGLang),这里只介绍我喜欢的 vLLM

vLLM 部署(推荐 v0.10.0+)
shell 复制代码
# 安装特定版本 transformers
pip install git+https://github.com/huggingface/transformers@4970b23cedaf745f963779b4eae68da281e8c6ca

# 启动服务
# export MODEL_PATH=tencent/Hunyuan-7B-MT
# export MODEL_PATH=/root/.cache/modelscope/hub/models/Tencent-Hunyuan/Hunyuan-7B-MT/
python3 -m vllm.entrypoints.openai.api_server \
    --host 0.0.0.0 \
    --port 8000 \
    --trust-remote-code \
    --model tencent/HY-MT1.5-1.8B \
    --tensor-parallel-size 1 \
    --dtype bfloat16 \
    --served-model-name hunyuan \
    2>&1 | tee log_server.txt

在线体验 - 实测

不想本地部署,只想体验的话,可以直接在这里试试

我测试了一下,直接放大招

1.5B 版本感觉去挑战这种难度非常吃力,翻译的很差

7B 也不咋地

外链图片转存中...(img-f8C3NqGl-1767539031278)

这是我之前我写好但是没有发布的一篇文章中的翻译挑战题,感觉纯翻译大模型在这种难度的题目中,还是不如通用、推理大模型

它最大的价值:量化后的 1.8B 模型可以轻松部署在消费级显卡甚至边缘设备上,实时翻译场景完全 hold 住。

相关推荐
那个村的李富贵6 小时前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作
人工智能·aigc·cann
腾讯云开发者7 小时前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南
人工智能
CareyWYR7 小时前
每周AI论文速递(260202-260206)
人工智能
hopsky8 小时前
大模型生成PPT的技术原理
人工智能
禁默9 小时前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切9 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒9 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站9 小时前
Clawdbot(现名Moltbot)-现状分析
人工智能
那个村的李富贵9 小时前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
二十雨辰9 小时前
[python]-AI大模型
开发语言·人工智能·python