实例功能
很简单的一个实例,功能就是一个实现图片分类的功能,然后拓展实现以下
- 将一张YUV420SP格式的图片编码为*.jpg格式的图片。
- 将两张*.jpg格式的解码成两张YUV420SP NV12格式的图片,缩放,再进行模型推理,分别得到两张图片的推理结果后,处理推理结果,输出最大置信度的类别标识以及top5置信度的总和。
- 将两张*.jpg格式的解码成两张YUV420SP NV12格式的图片,抠图,再进行模型推理,分别得到两张图片的推理结果后,处理推理结果,输出最大置信度的类别标识以及top5置信度的总和。
- 将两张*.jpg格式的解码成两张YUV420SP NV12格式的图片,抠图贴图,再进行模型推理,分别得到两张图片的推理结果后,处理推理结果,输出最大置信度的类别标识以及top5置信度的总和。
- 将YUV420SP NV12格式的图片(分辨率8192*8192)缩放,得到4000*4000。
环境及环境版本介绍
NPU:Ascend910(32GB)
CANN版本:CANN-8.0.RC3.alpha001
开始实践
创建conda环境
bash
conda create -n cann_demo python=3.8 -y
conda activate cann_demo
安装CANN
bash
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C20SPC703/Ascend-cann-toolkit_8.0.0.alpha003_linux-aarch64.run
bash Ascend-cann-toolkit_8.0.0.alpha003_linux-aarch64.run --full
激活环境变量
bash
source /home/ma-user/Ascend/ascend-toolkit/set_env.sh
下载体验代码仓
bash
git clone -b v0.3-8.0.0.alpha003 https://gitee.com/Ascend/samples
进入示例文件夹
bash
cd samples/cplusplus/level2_simple_inference/1_classification/vpc_jpeg_resnet50_imagenet_classification
获取ResNet-50原始模型
下载模型CAFFE文件
bash
cd caffe_model
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/003_Atc_Models/AE/ATC%20Model/resnet50/resnet50.caffemodel
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/003_Atc_Models/AE/ATC%20Model/resnet50/resnet50.prototxt
cd ..
安装依赖
bash
pip install decorator attrs psutil sympy scipy
转换模型
bash
atc --model=caffe_model/resnet50.prototxt --weight=caffe_model/resnet50.caffemodel --framework=0 --soc_version=Ascend910 --insert_op_conf=caffe_model/aipp.cfg --output=model/resnet50_aipp
准备测试图片
bash
cd data
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/aclsample/dvpp_vpc_8192x8192_nv12.yuv
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/aclsample/persian_cat_1024_1536_283.jpg
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/aclsample/wood_rabbit_1024_1061_330.jpg
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/aclsample/wood_rabbit_1024_1068_nv12.yuv
cd ..
编译运行
安装依赖
bash
conda install -c conda-forge cmake
conda install -c conda-forge binutils
创建目录
bash
mkdir -p build/intermediates/host
设置环境变量
bash
source /home/ma-user/Ascend/ascend-toolkit/set_env.sh
export DDK_PATH=$HOME/Ascend/ascend-toolkit/latest
export NPU_HOST_LIB=$DDK_PATH/runtime/lib64/stub
生成编译文件
bash
cd build/intermediates/host
cmake ../../../src -DCMAKE_CXX_COMPILER=g++ -DCMAKE_SKIP_RPATH=TRUE
make
运行
设置main文件权限为可运行
bahs
cd ../../../out
chmod +x main
将两张*.jpg格式的解码成两张YUV420SP NV12格式的图片,缩放,再进行模型推理,分别得到两张图片的推理结果
bash
./main 0
运行结果
[INFO] ./main param, param represents a vpc feature and must be set
[INFO] start check result fold:./result
[INFO] make directory successfully.
[INFO] check result success, fold exist
[INFO] acl init success
[INFO] set device 0 success
[INFO] create context success
[INFO] create stream success
[INFO] get run mode success
[INFO] dvpp init resource success
[INFO] load model ../model/resnet50_aipp.om success
[INFO] create model description success
[INFO] create model output success
[INFO] model input width 224, input height 224
[INFO] -------------------------------------------
[INFO] start to process picture:../data/persian_cat_1024_1536_283.jpg
[INFO] call JpegD
[INFO] call vpcResize
[INFO] Process dvpp success
[INFO] create model input success
[INFO] model execute success
[INFO] destroy model input success
[INFO] result : classType[283], top1[0.969727], top5[0.979855]
[INFO] -------------------------------------------
[INFO] start to process picture:../data/wood_rabbit_1024_1061_330.jpg
[INFO] call JpegD
[INFO] call vpcResize
[INFO] Process dvpp success
[INFO] create model input success
[INFO] model execute success
[INFO] destroy model input success
[INFO] result : classType[331], top1[0.895508], top5[1.000134]
[INFO] -------------------------------------------
[INFO] unload model success, modelId is 1
[INFO] destroy model description success
[INFO] destroy model output success
[INFO] execute sample success
[INFO] end to destroy stream
[INFO] end to destroy context
[INFO] end to reset device 0
[INFO] end to finalize acl
将两张*.jpg格式的解码成两张YUV420SP NV12格式的图片,抠图,再进行模型推理,分别得到两张图片的推理结果。
bash
./main 1
运行结果
[INFO] ./main param, param represents a vpc feature and must be set
[INFO] start check result fold:./result
[INFO] check result success, fold exist
[INFO] acl init success
[INFO] set device 0 success
[INFO] create context success
[INFO] create stream success
[INFO] get run mode success
[INFO] dvpp init resource success
[INFO] load model ../model/resnet50_aipp.om success
[INFO] create model description success
[INFO] create model output success
[INFO] model input width 224, input height 224
[INFO] -------------------------------------------
[INFO] start to process picture:../data/persian_cat_1024_1536_283.jpg
[INFO] call JpegD
[INFO] call vpcCrop
[INFO] Process dvpp success
[INFO] create model input success
[INFO] model execute success
[INFO] destroy model input success
[INFO] result : classType[283], top1[0.996094], top5[0.999629]
[INFO] -------------------------------------------
[INFO] start to process picture:../data/wood_rabbit_1024_1061_330.jpg
[INFO] call JpegD
[INFO] call vpcCrop
[INFO] Process dvpp success
[INFO] create model input success
[INFO] model execute success
[INFO] destroy model input success
[INFO] result : classType[330], top1[0.859863], top5[1.000106]
[INFO] -------------------------------------------
[INFO] unload model success, modelId is 1
[INFO] destroy model description success
[INFO] destroy model output success
[INFO] execute sample success
[INFO] end to destroy stream
[INFO] end to destroy context
[INFO] end to reset device 0
[INFO] end to finalize acl
将两张*.jpg格式的解码成两张YUV420SP NV12格式的图片,抠图贴图,再进行模型推理,分别得到两张图片的推理结果。
bash
./main 2
运行结果
[INFO] ./main param, param represents a vpc feature and must be set
[INFO] start check result fold:./result
[INFO] check result success, fold exist
[INFO] acl init success
[INFO] set device 0 success
[INFO] create context success
[INFO] create stream success
[INFO] get run mode success
[INFO] dvpp init resource success
[INFO] load model ../model/resnet50_aipp.om success
[INFO] create model description success
[INFO] create model output success
[INFO] model input width 224, input height 224
[INFO] -------------------------------------------
[INFO] start to process picture:../data/persian_cat_1024_1536_283.jpg
[INFO] call JpegD
[INFO] call vpcCropAndPaste
[INFO] Process dvpp success
[INFO] create model input success
[INFO] model execute success
[INFO] destroy model input success
[INFO] result : classType[283], top1[0.431885], top5[0.751892]
[INFO] -------------------------------------------
[INFO] start to process picture:../data/wood_rabbit_1024_1061_330.jpg
[INFO] call JpegD
[INFO] call vpcCropAndPaste
[INFO] Process dvpp success
[INFO] create model input success
[INFO] model execute success
[INFO] destroy model input success
[INFO] result : classType[330], top1[0.685059], top5[0.969410]
[INFO] -------------------------------------------
[INFO] unload model success, modelId is 1
[INFO] destroy model description success
[INFO] destroy model output success
[INFO] execute sample success
[INFO] end to destroy stream
[INFO] end to destroy context
[INFO] end to reset device 0
[INFO] end to finalize acl
将一张YUV420SP格式的图片编码为*.jpg格式的图片。
bash
./main 3
运行结果
[INFO] ./main param, param represents a vpc feature and must be set
[INFO] start check result fold:./result
[INFO] check result success, fold exist
[INFO] acl init success
[INFO] set device 0 success
[INFO] create context success
[INFO] create stream success
[INFO] get run mode success
[INFO] dvpp init resource success
[INFO] start to jpege picture ../data/wood_rabbit_1024_1068_nv12.yuv
[INFO] end to destroy stream
[INFO] end to destroy context
[INFO] end to reset device 0
[INFO] end to finalize acl
将一张分辨率为8192*8192的YUV420SP格式的图片缩放至4000*4000。
bash
./main 4
运行结果
[INFO] ./main param, param represents a vpc feature and must be set
[INFO] start check result fold:./result
[INFO] check result success, fold exist
[INFO] acl init success
[INFO] set device 0 success
[INFO] create context success
[INFO] create stream success
[INFO] get run mode success
[INFO] dvpp process 8k resize begin
[INFO] dvpp init resource success
[INFO] dvpp process 8k resize success
[INFO] end to destroy stream
[INFO] end to destroy context
[INFO] end to reset device 0
[INFO] end to finalize acl
整体运行结果
执行可执行文件成功后,同时会在main文件同级的result目录下生成结果文件,便于后期查看。结果文件如下:
- dvpp_output_0:persian_cat_1024_1536_283.jpg:图片经过缩放或抠图或抠图贴图之后的结果图片。
- dvpp_output_1:wood_rabbit_1024_1061_330.jpg:图片经过缩放或抠图或抠图贴图之后的结果图片。
- model_output_0:persian_cat_1024_1536_283.jpg:图片的模型推理结果,二进制文件。
- model_output_0.txt:persian_cat_1024_1536_283.jpg:图片的模型推理结果,txt文件。
- model_output_1:wood_rabbit_1024_1061_330.jpg:图片的模型推理结果,二进制文件。
- model_output_1.txt:wood_rabbit_1024_1061_330.jpg:图片的模型推理结果,txt文件。
- jpege_output_0.jpg:wood_rabbit_1024_1068_nv12.yuv:图片结果编码后的结果图片。
- dvpp_vpc_4000x4000_nv12.yuv:dvpp_vpc_8192x8192_nv12.yuv:图片缩放后的结果图片。