Temperature、Top P 学习

1、Temperature(温度)

原理:模型计算出下一个token所有可能概率分布后,Temperature会调整这个分布的平滑度。

示例:

llm每次要写一个字时,它会有一张候选词清单,每个词后面都标着模型计算的概率

比如:

"我今天想去------",

清单可能是:

公园(80%)、超市(15%)、月球(5%)

高Temperature(如1.0+):会让低概率的Token更容易被选中,使生成结果更有创造性,可能出现不连贯的词语。

低Temperature(如0.2):会让高概率的token权重更大,使生成结果更稳定、更保守。比如上述,模型几乎只会选择"公园",选"超市"的概率极低,"火星"完全没有机会。

总结:

温度越高:越活跃,llm生成文本多样性高

温度越低:越稳定保守,llm生成文本多样性低

2、Top P(核采样)

原理:设定一个概率阈值(p),然后从高到低累加所有Token的概率,直到总和超过p为止,模型只会在这个累加出来的"核心"词汇表中选择下一个token。

高Top p(如:0.9):候选词汇表大,生成结果多样性

低Top p(如:0.2):候选词汇表小,生成结果稳定,保守

示例:

假设模型要完成句子:"今天天气真..."

模型预测的下一个词可能是:好(60%)、不错(30%)、糟(9%)、可乐(0.01%)。

高Temperature:会提升所有词的概率,使得"可乐"这个不相关的词也有机会被选中。

Top P (设为0.9):会选择概率总和达到90%的词。这里 好(60%) + 不错(30%) = 90%,所以模型只会从"好"和"不错"中

选择,直接排除了"可乐"这种离谱的选项。

如果top p设置0.2:

1、将词汇表里的词,按概率从高到低排序

2、从概率最高的开始累加概率

3、一旦累积概率超过设定的p值(0.2),就停止,并只从这些被选中的词中抽样
按这个步骤计算,候选词里面之后"好"这一个词

【模型参数官网】

比如通义千问:

相关推荐
盐焗西兰花3 小时前
鸿蒙学习实战之路-Reader Kit修改翻页方式字体大小及行间距最佳实践
学习·华为·harmonyos
QiZhang | UESTC3 小时前
学习日记day76
学习
久邦科技3 小时前
20个免费电子书下载网站,实现电子书自由(2025持续更新)
学习
Gain_chance4 小时前
34-学习笔记尚硅谷数仓搭建-DWS层最近一日汇总表建表语句汇总
数据仓库·hive·笔记·学习·datagrip
念风零壹5 小时前
AI 时代的前端技术:从系统编程到 JavaScript/TypeScript
前端·ai
Gain_chance5 小时前
36-学习笔记尚硅谷数仓搭建-DWS层数据装载脚本
大数据·数据仓库·笔记·学习
XH华5 小时前
备战蓝桥杯,第九章:结构体和类
学习·蓝桥杯
Gain_chance6 小时前
35-学习笔记尚硅谷数仓搭建-DWS层最近n日汇总表及历史至今汇总表建表语句
数据库·数据仓库·hive·笔记·学习
懒虫虫~6 小时前
利用自定义Agent-Skill实现项目JDK17升级
ai·skill
AI架构全栈开发实战笔记6 小时前
Eureka 在大数据环境中的性能优化技巧
大数据·ai·eureka·性能优化