AI大模型之Agent,RAG,LangChain(二)

之前分享了模型开发架构,借助模型架构这里讲一下大模型开发应用场景

一:开发场景

1.纯prompt

客户端提供提示词,大模型返回response

2.Agent+Function Calling

大模型要有能力调用外部api实现prompt,这时候需要agent

3.RAG

在实现专业领域需要的知识的时候,需要RAG把专业知识转为词向量存储起来

4.Fine-tuning

把RAG存储起来的数据微调大模型,让大模型更全面.

二:小结

对比上面的开发场景,会发现RAG和Fine-tuning很相似,具体开发要怎么选择呢,这里我总结了一下选择的方法.

首先确定是否补充额外的专业知识,需要额外的专业知识,那选择RAG.是否需要对接其他系统(联网,深度思考等),需要选择Agent.后续是否需要把额外的专业的知识迁移到本地,如果需要,那么选择Fine-tuning.

相关推荐
一切尽在,你来8 小时前
第二章 预告内容
人工智能·langchain·ai编程
一切尽在,你来12 小时前
1.1 AI大模型应用开发和Langchain的关系
人工智能·langchain
一切尽在,你来13 小时前
1.2 LangChain 1.2.7 版本核心特性与升级点
人工智能·langchain
Bruk.Liu13 小时前
(LangChain 实战14):基于 ChatMessageHistory 自定义实现对话记忆功能
人工智能·python·langchain·agent
JaydenAI19 小时前
[拆解LangChain执行引擎] ManagedValue——一种特殊的只读虚拟通道
python·langchain
OPEN-Source20 小时前
大模型实战:搭建一张“看得懂”的大模型应用可观测看板
人工智能·python·langchain·rag·deepseek
一切尽在,你来1 天前
1.4 LangChain 1.2.7 核心架构概览
人工智能·langchain·ai编程
一切尽在,你来1 天前
1.3 环境搭建
人工智能·ai·langchain·ai编程
蛇皮划水怪1 天前
深入浅出LangChain4J
java·langchain·llm
、BeYourself1 天前
LangChain4j 流式响应
langchain