Agent中的深度思考是什么,有什么区别: ReAct模式 和 Plan-and-Solve模式

引言:平时我们看到的 普通模式 就是 ReAct模式深度思考 Plan-and-Solve模式

ReAct 像是一位勇敢的探险家,边走边看;Plan-and-Solve 则像是一位严谨的工程师,先画图纸再施工。两者各有千秋,适用于不同的战场。

核心机制:单步循环 vs 全局规划

ReAct(Reasoning + Acting) 的核心是"思考-行动-观察"的循环。每一步都基于上一步的结果重新思考,适合探索性任务。

Plan-and-Solve(Plan + Execute) 则先制定完整计划,再逐步执行。计划阶段不调用工具,执行阶段严格按照计划进行,适合目标明确的复杂任务。

性能与成本:速度与精度的权衡

适用场景:何时选谁?

🎯 ReAct 的黄金场景

实时交互:客服对话、即时查询

探索性任务:信息搜集、未知领域探索

成本控制:预算有限的简单任务

📋 Plan-and-Solve 的主场

复杂多步任务:数据分析、报告生成

高精度要求:金融计算、代码生成

长期规划:项目管理、战略决策

最佳实践:混合架构

在实际应用中,两者并非水火不容。LangGraph 等框架推荐:

顶层用 Plan-and-Solve 做宏观规划

底层用 ReAct 执行具体子任务

这样既保证方向不跑偏,又保持微观灵活性。

相关推荐
SunnyRivers1 小时前
吴恩达讲Agent Skills
agent·tools·mcp·skills·agent skills
User_芊芊君子15 小时前
HCCL高性能通信库编程指南:构建多卡并行训练系统
人工智能·游戏·ai·agent·测评
爱喝白开水a20 小时前
前端AI自动化测试:brower-use调研让大模型帮你做网页交互与测试
前端·人工智能·大模型·prompt·交互·agent·rag
落霞的思绪21 小时前
GIS大模型RAG知识库
agent·rag
香芋Yu1 天前
【LangChain1.0】第九篇 Agent 架构设计
langchain·agent·架构设计
组合缺一1 天前
Solon AI (Java) v3.9 正式发布:全能 Skill 爆发,Agent 协作更专业!仍然支持 java8!
java·人工智能·ai·llm·agent·solon·mcp
User_芊芊君子1 天前
AI Agent工业化落地避坑指南:从技术卡点到量产,脉脉AMA给我的实战启示
人工智能·ai·agent·脉脉测评
韦东东2 天前
RAGFlow v0.20的Agent重大更新:text2sql的Agent案例测试
人工智能·大模型·agent·text2sql·ragflow
带刺的坐椅2 天前
用 10 行 Java8 代码,开发一个自己的 ClaudeCodeCLI?你信吗?
java·ai·llm·agent·solon·mcp·claudecode·skills
技术狂人1682 天前
2026 智能体深度解析:落地真相、红利赛道与实操全指南(调研 100 + 案例干货)
人工智能·职场和发展·agent·商机