Agent中的深度思考是什么,有什么区别: ReAct模式 和 Plan-and-Solve模式

引言:平时我们看到的 普通模式 就是 ReAct模式深度思考 Plan-and-Solve模式

ReAct 像是一位勇敢的探险家,边走边看;Plan-and-Solve 则像是一位严谨的工程师,先画图纸再施工。两者各有千秋,适用于不同的战场。

核心机制:单步循环 vs 全局规划

ReAct(Reasoning + Acting) 的核心是"思考-行动-观察"的循环。每一步都基于上一步的结果重新思考,适合探索性任务。

Plan-and-Solve(Plan + Execute) 则先制定完整计划,再逐步执行。计划阶段不调用工具,执行阶段严格按照计划进行,适合目标明确的复杂任务。

性能与成本:速度与精度的权衡

适用场景:何时选谁?

🎯 ReAct 的黄金场景

实时交互:客服对话、即时查询

探索性任务:信息搜集、未知领域探索

成本控制:预算有限的简单任务

📋 Plan-and-Solve 的主场

复杂多步任务:数据分析、报告生成

高精度要求:金融计算、代码生成

长期规划:项目管理、战略决策

最佳实践:混合架构

在实际应用中,两者并非水火不容。LangGraph 等框架推荐:

顶层用 Plan-and-Solve 做宏观规划

底层用 ReAct 执行具体子任务

这样既保证方向不跑偏,又保持微观灵活性。

相关推荐
roamingcode19 小时前
超越 Context Window:为何文件系统是 AI Agent 的终极记忆体
人工智能·agent·cursor·claude code·上下文工程·skill 技能
大模型真好玩1 天前
LangGraph智能体开发设计模式(四)——LangGraph多智能体设计模式:网络架构
人工智能·langchain·agent
明月(Alioo)1 天前
AIGC入门,在Mac上基于Ollama和phi3:mini的完整Agent/Subagent例子
机器学习·aigc·agent·subagent
视觉&物联智能1 天前
【杂谈】-多智能体系统的效能悖论:协作优势的认知边界
ai·llm·agent·智能体·人工 智能
爱吃泡芙的小白白1 天前
Agent学习——反思模式
学习·agent·学习记录
沈询-阿里2 天前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
且去填词2 天前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek
EdisonZhou2 天前
MAF快速入门(11)并行工作流
llm·aigc·agent·.net core
职业码农NO.12 天前
AI 技术栈完整解析,从 GPU 到应用的五层架构
人工智能·架构·系统架构·aigc·agent