Minimind-MOE 模型参数量计算

文章目录

  • [MiniMind MoE 模型参数量计算](#MiniMind MoE 模型参数量计算)

让我查看 model_minimind.py 文件,分析模型架构并计算参数量:

toolName: view_files

status: success

filePath: /mnt/data/test1/llm_learning/minimind/minimind-master/model/model_minimind.py

让我查看 MOE 相关的代码,特别是 MOEFeedForward 类的实现:

toolName: view_files

status: success

filePath: /mnt/data/test1/llm_learning/minimind/minimind-master/model/model_minimind.py

让我查看模型的主要结构,包括嵌入层和整体架构:

toolName: view_files

status: success

filePath: /mnt/data/test1/llm_learning/minimind/minimind-master/model/model_minimind.py

MiniMind MoE 模型参数量计算

根据您提供的训练参数,我来计算模型的具体参数量:

基本参数配置

  • hidden_size: 640
  • num_hidden_layers: 8
  • use_moe: 1 (启用MoE)
  • n_routed_experts: 4 (路由专家数量)
  • n_shared_experts: 1 (共享专家数量)
  • num_experts_per_tok: 2 (每个token选择的专家数)
  • vocab_size: 6400
  • num_attention_heads: 8
  • num_key_value_heads: 2

参数量计算

1. 嵌入层 (Embedding)

复制代码
嵌入层参数 = vocab_size × hidden_size
          = 6400 × 640
          = 4,096,000

2. 注意力层 (Attention Layers)

每个注意力层包含:

  • q_proj: 640 × 640 = 409,600

  • k_proj: 640 × (640/8×2) = 640 × 160 = 102,400

  • v_proj: 640 × 160 = 102,400

  • o_proj: 640 × 640 = 409,600

    每层注意力参数 = 409,600 + 102,400 + 102,400 + 409,600 = 1,024,000
    总注意力参数 = 8层 × 1,024,000 = 8,192,000

3. MoE 前馈网络 (MOEFeedForward)

  • intermediate_size: 640 × 8/3 = 1706.67 → 1728 (64的倍数)

  • 每个FeedForward网络参数:

    • gate_proj: 640 × 1728 = 1,105,920
    • up_proj: 640 × 1728 = 1,105,920
    • down_proj: 1728 × 640 = 1,105,920
    • 总计:3,317,760
  • MoE层参数:

    • 路由专家: 4 × 3,317,760 = 13,271,040

    • 共享专家: 1 × 3,317,760 = 3,317,760

    • 门控网络: 640 × 4 = 2,560

    • 每层MoE参数: 13,271,040 + 3,317,760 + 2,560 = 16,591,360

      总MoE参数 = 8层 × 16,591,360 = 132,730,880

4. 输出层 (LM Head)

  • 由于与嵌入层权重共享,无额外参数

总参数量计算

复制代码
总参数量 = 嵌入层 + 注意力层 + MoE层
        = 4,096,000 + 8,192,000 + 132,730,880
        = 145,018,880

计算结果

  • 总参数量: 约 145.02M
  • 激活参数量 (每个token实际使用的参数):
    • 基础参数: 嵌入层 + 注意力层 = 12,288,000
    • 专家参数: (每个token使用2个专家) 2 × 3,317,760 × 8层 = 53,084,160
    • 总激活参数: 约 65.37M

结论

根据您的训练参数,MiniMind MoE 模型的总参数量约为 145M,与您之前提到的 MiniMind2-MoE 规格一致。

这个模型配置在8张4090 GPU上训练是合适的,能够充分利用GPU内存和计算能力。对于20倍的大数据集,建议您适当调整学习率和训练轮数,以获得最佳效果。

python 复制代码
# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘
#                                             MiniMind Config
# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘

from transformers import PretrainedConfig


class MiniMindConfig(PretrainedConfig):
    model_type = "minimind"

    def __init__(
            self,
            dropout: float = 0.0,
            bos_token_id: int = 1,
            eos_token_id: int = 2,
            hidden_act: str = 'silu',
            hidden_size: int = 512,
            intermediate_size: int = None,
            max_position_embeddings: int = 32768,
            num_attention_heads: int = 8,
            num_hidden_layers: int = 8,
            num_key_value_heads: int = 2,
            vocab_size: int = 6400,
            rms_norm_eps: float = 1e-05,
            rope_theta: int = 1000000.0,
            inference_rope_scaling: bool = False,
            flash_attn: bool = True,
            ####################################################
            # Here are the specific configurations of MOE
            # When use_moe is false, the following is invalid
            ####################################################
            use_moe: bool = False,
            num_experts_per_tok: int = 2,
            n_routed_experts: int = 4,
            n_shared_experts: int = 1,
            scoring_func: str = 'softmax',
            aux_loss_alpha: float = 0.01,
            seq_aux: bool = True,
            norm_topk_prob: bool = True,
            **kwargs
    ):
        super().__init__(**kwargs)
        self.dropout = dropout
        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id
        self.hidden_act = hidden_act
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.max_position_embeddings = max_position_embeddings
        self.num_attention_heads = num_attention_heads
        self.num_hidden_layers = num_hidden_layers
        self.num_key_value_heads = num_key_value_heads
        self.vocab_size = vocab_size
        self.rms_norm_eps = rms_norm_eps
        self.rope_theta = rope_theta
        self.inference_rope_scaling = inference_rope_scaling
        # 外推长度 = factor * original_max_position_embeddings = 32768
        self.rope_scaling = {
            "beta_fast": 32,
            "beta_slow": 1,
            "factor": 16,
            "original_max_position_embeddings": 2048,
            "attention_factor": 1.0,
            "type": "yarn"
        } if self.inference_rope_scaling else None
        self.flash_attn = flash_attn
        ####################################################
        # Here are the specific configurations of MOE
        # When use_moe is false, the following is invalid
        ####################################################
        self.use_moe = use_moe
        self.num_experts_per_tok = num_experts_per_tok  # 每个token选择的专家数量
        self.n_routed_experts = n_routed_experts  # 总的专家数量
        self.n_shared_experts = n_shared_experts  # 共享专家
        self.scoring_func = scoring_func  # 评分函数,默认为'softmax'
        self.aux_loss_alpha = aux_loss_alpha  # 辅助损失的alpha参数
        self.seq_aux = seq_aux  # 是否在序列级别上计算辅助损失
        self.norm_topk_prob = norm_topk_prob  # 是否标准化top-k概率


# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘
#                                             MiniMind Model
# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘

import math
import torch
import torch.nn.init as init
import torch.nn.functional as F
from torch import nn
from transformers.activations import ACT2FN
from typing import Optional, Tuple, List, Union
from transformers import PreTrainedModel, GenerationMixin, PretrainedConfig
from transformers.modeling_outputs import CausalLMOutputWithPast


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float = 1e-5):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        return self.weight * self._norm(x.float()).type_as(x)


def precompute_freqs_cis(dim: int, end: int = int(32 * 1024), rope_base: float = 1e6,
                         rope_scaling: Optional[dict] = None):
    freqs, attn_factor = 1.0 / (rope_base ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)), 1.0
    if rope_scaling is not None:
        orig_max, factor, beta_fast, beta_slow, attn_factor = (
            rope_scaling.get("original_max_position_embeddings", 2048), rope_scaling.get("factor", 16),
            rope_scaling.get("beta_fast", 32.0), rope_scaling.get("beta_slow", 1.0), rope_scaling.get("attention_factor", 1.0)
        )
        if end / orig_max > 1.0:
            # YaRN: f'(i) = f(i)((1-γ) + γ/s), where γ∈[0,1] is linear ramp
            inv_dim = lambda b: (dim * math.log(orig_max / (b * 2 * math.pi))) / (2 * math.log(rope_base))
            low, high = max(math.floor(inv_dim(beta_fast)), 0), min(math.ceil(inv_dim(beta_slow)), dim // 2 - 1)
            ramp = torch.clamp((torch.arange(dim // 2, device=freqs.device).float() - low) / max(high - low, 0.001), 0, 1)
            freqs = freqs * (1 - ramp + ramp / factor)

    t = torch.arange(end, device=freqs.device)
    freqs = torch.outer(t, freqs).float()
    freqs_cos = torch.cat([torch.cos(freqs), torch.cos(freqs)], dim=-1) * attn_factor
    freqs_sin = torch.cat([torch.sin(freqs), torch.sin(freqs)], dim=-1) * attn_factor
    return freqs_cos, freqs_sin


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    def rotate_half(x):
        return torch.cat((-x[..., x.shape[-1] // 2:], x[..., : x.shape[-1] // 2]), dim=-1)

    q_embed = (q * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(q) * sin.unsqueeze(unsqueeze_dim))
    k_embed = (k * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(k) * sin.unsqueeze(unsqueeze_dim))
    return q_embed, k_embed


def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
    """torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
    bs, slen, num_key_value_heads, head_dim = x.shape
    if n_rep == 1:
        return x
    return (
        x[:, :, :, None, :].expand(bs, slen, num_key_value_heads, n_rep, head_dim).reshape(bs, slen, num_key_value_heads * n_rep, head_dim)
    )


class Attention(nn.Module):
    def __init__(self, args: MiniMindConfig):
        super().__init__()
        self.num_key_value_heads = args.num_attention_heads if args.num_key_value_heads is None else args.num_key_value_heads
        assert args.num_attention_heads % self.num_key_value_heads == 0
        self.n_local_heads = args.num_attention_heads
        self.n_local_kv_heads = self.num_key_value_heads
        self.n_rep = self.n_local_heads // self.n_local_kv_heads
        self.head_dim = args.hidden_size // args.num_attention_heads
        self.q_proj = nn.Linear(args.hidden_size, args.num_attention_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(args.num_attention_heads * self.head_dim, args.hidden_size, bias=False)
        self.attn_dropout = nn.Dropout(args.dropout)
        self.resid_dropout = nn.Dropout(args.dropout)
        self.dropout = args.dropout
        self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
        # print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")

    def forward(self,
                x: torch.Tensor,
                position_embeddings: Tuple[torch.Tensor, torch.Tensor],  # 修改为接收cos和sin
                past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
                use_cache=False,
                attention_mask: Optional[torch.Tensor] = None):
        bsz, seq_len, _ = x.shape
        xq, xk, xv = self.q_proj(x), self.k_proj(x), self.v_proj(x)
        xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
        xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
        xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)

        cos, sin = position_embeddings
        xq, xk = apply_rotary_pos_emb(xq, xk, cos, sin)

        # kv_cache实现
        if past_key_value is not None:
            xk = torch.cat([past_key_value[0], xk], dim=1)
            xv = torch.cat([past_key_value[1], xv], dim=1)
        past_kv = (xk, xv) if use_cache else None

        xq, xk, xv = (
            xq.transpose(1, 2),
            repeat_kv(xk, self.n_rep).transpose(1, 2),
            repeat_kv(xv, self.n_rep).transpose(1, 2)
        )

        if self.flash and (seq_len > 1) and (past_key_value is None) and (attention_mask is None or torch.all(attention_mask == 1)):
            output = F.scaled_dot_product_attention(xq, xk, xv, dropout_p=self.dropout if self.training else 0.0, is_causal=True)
        else:
            scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
            scores[:, :, :, -seq_len:] += torch.triu(torch.full((seq_len, seq_len), float("-inf"), device=scores.device), diagonal=1)

            if attention_mask is not None:
                extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
                extended_attention_mask = (1.0 - extended_attention_mask) * -1e9
                scores = scores + extended_attention_mask

            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            scores = self.attn_dropout(scores)
            output = scores @ xv

        output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
        output = self.resid_dropout(self.o_proj(output))
        return output, past_kv


class FeedForward(nn.Module):
    def __init__(self, config: MiniMindConfig):
        super().__init__()
        if config.intermediate_size is None:
            intermediate_size = int(config.hidden_size * 8 / 3)
            config.intermediate_size = 64 * ((intermediate_size + 64 - 1) // 64)
        self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
        self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        self.dropout = nn.Dropout(config.dropout)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        return self.dropout(self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)))


class MoEGate(nn.Module):
    def __init__(self, config: MiniMindConfig):
        super().__init__()
        self.config = config
        self.top_k = config.num_experts_per_tok
        self.n_routed_experts = config.n_routed_experts

        self.scoring_func = config.scoring_func
        self.alpha = config.aux_loss_alpha
        self.seq_aux = config.seq_aux

        self.norm_topk_prob = config.norm_topk_prob
        self.gating_dim = config.hidden_size
        self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
        self.reset_parameters()

    def reset_parameters(self) -> None:
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))

    def forward(self, hidden_states):
        bsz, seq_len, h = hidden_states.shape
        hidden_states = hidden_states.view(-1, h)
        logits = F.linear(hidden_states, self.weight, None)
        if self.scoring_func == 'softmax':
            scores = logits.softmax(dim=-1)
        else:
            raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')

        topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)

        if self.top_k > 1 and self.norm_topk_prob:
            denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
            topk_weight = topk_weight / denominator

        if self.training and self.alpha > 0.0:
            scores_for_aux = scores
            aux_topk = self.top_k
            topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
            if self.seq_aux:
                scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
                ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
                ce.scatter_add_(1, topk_idx_for_aux_loss,
                                torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(
                    seq_len * aux_topk / self.n_routed_experts)
                aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
            else:
                mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
                ce = mask_ce.float().mean(0)
                Pi = scores_for_aux.mean(0)
                fi = ce * self.n_routed_experts
                aux_loss = (Pi * fi).sum() * self.alpha
        else:
            aux_loss = scores.new_zeros(1).squeeze()
        return topk_idx, topk_weight, aux_loss


class MOEFeedForward(nn.Module):
    def __init__(self, config: MiniMindConfig):
        super().__init__()
        self.config = config
        self.experts = nn.ModuleList([
            FeedForward(config)
            for _ in range(config.n_routed_experts)
        ])
        self.gate = MoEGate(config)
        if config.n_shared_experts > 0:
            self.shared_experts = nn.ModuleList([
                FeedForward(config)
                for _ in range(config.n_shared_experts)
            ])

    def forward(self, x):
        identity = x
        orig_shape = x.shape
        bsz, seq_len, _ = x.shape
        # 使用门控机制选择专家
        topk_idx, topk_weight, aux_loss = self.gate(x)
        x = x.view(-1, x.shape[-1])
        flat_topk_idx = topk_idx.view(-1)
        if self.training:
            x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
            y = torch.empty_like(x, dtype=x.dtype)
            for i, expert in enumerate(self.experts):
                expert_out = expert(x[flat_topk_idx == i])
                if expert_out.shape[0] > 0: y[flat_topk_idx == i] = expert_out.to(y.dtype)
                else: y[flat_topk_idx == i] = expert_out.to(y.dtype) + 0 * sum(p.sum() for p in expert.parameters())
            y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
            y = y.view(*orig_shape)
        else:
            y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
        if self.config.n_shared_experts > 0:
            for expert in self.shared_experts:
                y = y + expert(identity)
        self.aux_loss = aux_loss
        return y

    @torch.no_grad()
    def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
        expert_cache = torch.zeros_like(x)
        idxs = flat_expert_indices.argsort()
        tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
        token_idxs = idxs // self.config.num_experts_per_tok
        # 当tokens_per_expert = [6, 15, 20, 26],tokens_per_expert.shape[0]即为专家数量(此时为4)
        # 且token_idxs = [3, 7, 19, 21, 24, 25,  4,  5,  6, 10, 11, 12...] 时
        # 意味token_idxs[:6] -> [3, 7, 19, 21, 24, 25]这6个位置属于专家0处理的token(每个token有可能被多个专家处理,这取决于num_experts_per_tok)
        # 接下来9个位置token_idxs[6:15] -> [4,  5,  6, 10, 11, 12...]属于专家1处理的token...依此类推
        for i, end_idx in enumerate(tokens_per_expert):
            start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
            if start_idx == end_idx:
                continue
            expert = self.experts[i]
            exp_token_idx = token_idxs[start_idx:end_idx]
            expert_tokens = x[exp_token_idx]
            expert_out = expert(expert_tokens).to(expert_cache.dtype)
            expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
            expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)

        return expert_cache


class MiniMindBlock(nn.Module):
    def __init__(self, layer_id: int, config: MiniMindConfig):
        super().__init__()
        self.num_attention_heads = config.num_attention_heads
        self.hidden_size = config.hidden_size
        self.head_dim = config.hidden_size // config.num_attention_heads
        self.self_attn = Attention(config)

        self.layer_id = layer_id
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.mlp = FeedForward(config) if not config.use_moe else MOEFeedForward(config)

    def forward(self, hidden_states, position_embeddings, past_key_value=None, use_cache=False, attention_mask=None):
        residual = hidden_states
        hidden_states, present_key_value = self.self_attn(
            self.input_layernorm(hidden_states), position_embeddings,
            past_key_value, use_cache, attention_mask
        )
        hidden_states += residual
        hidden_states = hidden_states + self.mlp(self.post_attention_layernorm(hidden_states))
        return hidden_states, present_key_value


class MiniMindModel(nn.Module):
    def __init__(self, config: MiniMindConfig):
        super().__init__()
        self.config = config
        self.vocab_size, self.num_hidden_layers = config.vocab_size, config.num_hidden_layers
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
        self.dropout = nn.Dropout(config.dropout)
        self.layers = nn.ModuleList([MiniMindBlock(l, config) for l in range(self.num_hidden_layers)])
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        freqs_cos, freqs_sin = precompute_freqs_cis(dim=config.hidden_size // config.num_attention_heads,
                                                    end=config.max_position_embeddings, rope_base=config.rope_theta,
                                                    rope_scaling=config.rope_scaling)
        self.register_buffer("freqs_cos", freqs_cos, persistent=False)
        self.register_buffer("freqs_sin", freqs_sin, persistent=False)

    def forward(self,
                input_ids: Optional[torch.Tensor] = None,
                attention_mask: Optional[torch.Tensor] = None,
                past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
                use_cache: bool = False,
                **kwargs):
        batch_size, seq_length = input_ids.shape
        if hasattr(past_key_values, 'layers'): past_key_values = None
        past_key_values = past_key_values or [None] * len(self.layers)
        start_pos = past_key_values[0][0].shape[1] if past_key_values[0] is not None else 0

        hidden_states = self.dropout(self.embed_tokens(input_ids))

        position_embeddings = (
            self.freqs_cos[start_pos:start_pos + seq_length],
            self.freqs_sin[start_pos:start_pos + seq_length]
        )

        presents = []
        for layer_idx, (layer, past_key_value) in enumerate(zip(self.layers, past_key_values)):
            hidden_states, present = layer(
                hidden_states,
                position_embeddings,
                past_key_value=past_key_value,
                use_cache=use_cache,
                attention_mask=attention_mask
            )
            presents.append(present)

        hidden_states = self.norm(hidden_states)

        aux_loss = sum([l.mlp.aux_loss for l in self.layers if isinstance(l.mlp, MOEFeedForward)], hidden_states.new_zeros(1).squeeze())
        return hidden_states, presents, aux_loss


class MiniMindForCausalLM(PreTrainedModel, GenerationMixin):
    config_class = MiniMindConfig

    def __init__(self, config: MiniMindConfig = None):
        self.config = config or MiniMindConfig()
        super().__init__(self.config)
        self.model = MiniMindModel(self.config)
        self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False)
        self.model.embed_tokens.weight = self.lm_head.weight

    def forward(self,
                input_ids: Optional[torch.Tensor] = None,
                attention_mask: Optional[torch.Tensor] = None,
                labels: Optional[torch.Tensor] = None,
                past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
                use_cache: bool = False,
                logits_to_keep: Union[int, torch.Tensor] = 0,
                **args):
        hidden_states, past_key_values, aux_loss = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            **args
        )
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        loss = None
        if labels is not None:
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss = F.cross_entropy(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1), ignore_index=-100)

        output = CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=past_key_values, hidden_states=hidden_states)
        output.aux_loss = aux_loss
        return output

代码源自仓库 https://github.com/jingyaogong/minimind

相关推荐
、我是男生。2 小时前
tensorflow、pytorch
人工智能·pytorch·tensorflow
地理探险家2 小时前
【YOLOv8实战】15组衣物类深度学习数据集分享|附加载+标签管理代码
人工智能·python·深度学习·yolo·模型训练·电商视觉
勇气要爆发2 小时前
AI后端工程化:FastAPI + Pydantic + JWT 鉴权实战,从零构建 AI 接口服务
人工智能·fastapi·jwt·pydantic
大学生毕业题目2 小时前
毕业项目推荐:103-基于yolov8/yolov5/yolo11的皮肤癌检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·皮肤癌检测
ai_top_trends2 小时前
AI 生成 PPT 哪个好用?2026 年主流工具实测对比
人工智能·python
腾讯数据架构师2 小时前
k8s兼容昆仑芯p800
人工智能·云原生·容器·kubernetes·cube-studio·昆仑芯
人工智能AI技术2 小时前
Trae实战!5分钟生成微信小程序完整框架
人工智能
LDG_AGI2 小时前
【机器学习】深度学习推荐系统(二十八):X 推荐算法listwiseRescoring(同刷多样性降权)机制详解
人工智能·分布式·深度学习·算法·机器学习·推荐算法
程序猿炎义2 小时前
【Easy-VectorDB】Faiss入门与环境搭建笔记
人工智能·faiss