文章目录
- [MiniMind MoE 模型参数量计算](#MiniMind MoE 模型参数量计算)
让我查看 model_minimind.py 文件,分析模型架构并计算参数量:
toolName: view_files
status: success
filePath: /mnt/data/test1/llm_learning/minimind/minimind-master/model/model_minimind.py
让我查看 MOE 相关的代码,特别是 MOEFeedForward 类的实现:
toolName: view_files
status: success
filePath: /mnt/data/test1/llm_learning/minimind/minimind-master/model/model_minimind.py
让我查看模型的主要结构,包括嵌入层和整体架构:
toolName: view_files
status: success
filePath: /mnt/data/test1/llm_learning/minimind/minimind-master/model/model_minimind.py
MiniMind MoE 模型参数量计算
根据您提供的训练参数,我来计算模型的具体参数量:
基本参数配置
- hidden_size: 640
- num_hidden_layers: 8
- use_moe: 1 (启用MoE)
- n_routed_experts: 4 (路由专家数量)
- n_shared_experts: 1 (共享专家数量)
- num_experts_per_tok: 2 (每个token选择的专家数)
- vocab_size: 6400
- num_attention_heads: 8
- num_key_value_heads: 2
参数量计算
1. 嵌入层 (Embedding)
嵌入层参数 = vocab_size × hidden_size
= 6400 × 640
= 4,096,000
2. 注意力层 (Attention Layers)
每个注意力层包含:
-
q_proj: 640 × 640 = 409,600
-
k_proj: 640 × (640/8×2) = 640 × 160 = 102,400
-
v_proj: 640 × 160 = 102,400
-
o_proj: 640 × 640 = 409,600
每层注意力参数 = 409,600 + 102,400 + 102,400 + 409,600 = 1,024,000
总注意力参数 = 8层 × 1,024,000 = 8,192,000
3. MoE 前馈网络 (MOEFeedForward)
-
intermediate_size: 640 × 8/3 = 1706.67 → 1728 (64的倍数)
-
每个FeedForward网络参数:
- gate_proj: 640 × 1728 = 1,105,920
- up_proj: 640 × 1728 = 1,105,920
- down_proj: 1728 × 640 = 1,105,920
- 总计:3,317,760
-
MoE层参数:
-
路由专家: 4 × 3,317,760 = 13,271,040
-
共享专家: 1 × 3,317,760 = 3,317,760
-
门控网络: 640 × 4 = 2,560
-
每层MoE参数: 13,271,040 + 3,317,760 + 2,560 = 16,591,360
总MoE参数 = 8层 × 16,591,360 = 132,730,880
-
4. 输出层 (LM Head)
- 由于与嵌入层权重共享,无额外参数
总参数量计算
总参数量 = 嵌入层 + 注意力层 + MoE层
= 4,096,000 + 8,192,000 + 132,730,880
= 145,018,880
计算结果
- 总参数量: 约 145.02M
- 激活参数量 (每个token实际使用的参数):
- 基础参数: 嵌入层 + 注意力层 = 12,288,000
- 专家参数: (每个token使用2个专家) 2 × 3,317,760 × 8层 = 53,084,160
- 总激活参数: 约 65.37M
结论
根据您的训练参数,MiniMind MoE 模型的总参数量约为 145M,与您之前提到的 MiniMind2-MoE 规格一致。
这个模型配置在8张4090 GPU上训练是合适的,能够充分利用GPU内存和计算能力。对于20倍的大数据集,建议您适当调整学习率和训练轮数,以获得最佳效果。
python
# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘
# MiniMind Config
# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘
from transformers import PretrainedConfig
class MiniMindConfig(PretrainedConfig):
model_type = "minimind"
def __init__(
self,
dropout: float = 0.0,
bos_token_id: int = 1,
eos_token_id: int = 2,
hidden_act: str = 'silu',
hidden_size: int = 512,
intermediate_size: int = None,
max_position_embeddings: int = 32768,
num_attention_heads: int = 8,
num_hidden_layers: int = 8,
num_key_value_heads: int = 2,
vocab_size: int = 6400,
rms_norm_eps: float = 1e-05,
rope_theta: int = 1000000.0,
inference_rope_scaling: bool = False,
flash_attn: bool = True,
####################################################
# Here are the specific configurations of MOE
# When use_moe is false, the following is invalid
####################################################
use_moe: bool = False,
num_experts_per_tok: int = 2,
n_routed_experts: int = 4,
n_shared_experts: int = 1,
scoring_func: str = 'softmax',
aux_loss_alpha: float = 0.01,
seq_aux: bool = True,
norm_topk_prob: bool = True,
**kwargs
):
super().__init__(**kwargs)
self.dropout = dropout
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.hidden_act = hidden_act
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.max_position_embeddings = max_position_embeddings
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.num_key_value_heads = num_key_value_heads
self.vocab_size = vocab_size
self.rms_norm_eps = rms_norm_eps
self.rope_theta = rope_theta
self.inference_rope_scaling = inference_rope_scaling
# 外推长度 = factor * original_max_position_embeddings = 32768
self.rope_scaling = {
"beta_fast": 32,
"beta_slow": 1,
"factor": 16,
"original_max_position_embeddings": 2048,
"attention_factor": 1.0,
"type": "yarn"
} if self.inference_rope_scaling else None
self.flash_attn = flash_attn
####################################################
# Here are the specific configurations of MOE
# When use_moe is false, the following is invalid
####################################################
self.use_moe = use_moe
self.num_experts_per_tok = num_experts_per_tok # 每个token选择的专家数量
self.n_routed_experts = n_routed_experts # 总的专家数量
self.n_shared_experts = n_shared_experts # 共享专家
self.scoring_func = scoring_func # 评分函数,默认为'softmax'
self.aux_loss_alpha = aux_loss_alpha # 辅助损失的alpha参数
self.seq_aux = seq_aux # 是否在序列级别上计算辅助损失
self.norm_topk_prob = norm_topk_prob # 是否标准化top-k概率
# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘
# MiniMind Model
# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘
import math
import torch
import torch.nn.init as init
import torch.nn.functional as F
from torch import nn
from transformers.activations import ACT2FN
from typing import Optional, Tuple, List, Union
from transformers import PreTrainedModel, GenerationMixin, PretrainedConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
return self.weight * self._norm(x.float()).type_as(x)
def precompute_freqs_cis(dim: int, end: int = int(32 * 1024), rope_base: float = 1e6,
rope_scaling: Optional[dict] = None):
freqs, attn_factor = 1.0 / (rope_base ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)), 1.0
if rope_scaling is not None:
orig_max, factor, beta_fast, beta_slow, attn_factor = (
rope_scaling.get("original_max_position_embeddings", 2048), rope_scaling.get("factor", 16),
rope_scaling.get("beta_fast", 32.0), rope_scaling.get("beta_slow", 1.0), rope_scaling.get("attention_factor", 1.0)
)
if end / orig_max > 1.0:
# YaRN: f'(i) = f(i)((1-γ) + γ/s), where γ∈[0,1] is linear ramp
inv_dim = lambda b: (dim * math.log(orig_max / (b * 2 * math.pi))) / (2 * math.log(rope_base))
low, high = max(math.floor(inv_dim(beta_fast)), 0), min(math.ceil(inv_dim(beta_slow)), dim // 2 - 1)
ramp = torch.clamp((torch.arange(dim // 2, device=freqs.device).float() - low) / max(high - low, 0.001), 0, 1)
freqs = freqs * (1 - ramp + ramp / factor)
t = torch.arange(end, device=freqs.device)
freqs = torch.outer(t, freqs).float()
freqs_cos = torch.cat([torch.cos(freqs), torch.cos(freqs)], dim=-1) * attn_factor
freqs_sin = torch.cat([torch.sin(freqs), torch.sin(freqs)], dim=-1) * attn_factor
return freqs_cos, freqs_sin
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
def rotate_half(x):
return torch.cat((-x[..., x.shape[-1] // 2:], x[..., : x.shape[-1] // 2]), dim=-1)
q_embed = (q * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(q) * sin.unsqueeze(unsqueeze_dim))
k_embed = (k * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(k) * sin.unsqueeze(unsqueeze_dim))
return q_embed, k_embed
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, num_key_value_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :].expand(bs, slen, num_key_value_heads, n_rep, head_dim).reshape(bs, slen, num_key_value_heads * n_rep, head_dim)
)
class Attention(nn.Module):
def __init__(self, args: MiniMindConfig):
super().__init__()
self.num_key_value_heads = args.num_attention_heads if args.num_key_value_heads is None else args.num_key_value_heads
assert args.num_attention_heads % self.num_key_value_heads == 0
self.n_local_heads = args.num_attention_heads
self.n_local_kv_heads = self.num_key_value_heads
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.hidden_size // args.num_attention_heads
self.q_proj = nn.Linear(args.hidden_size, args.num_attention_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(args.num_attention_heads * self.head_dim, args.hidden_size, bias=False)
self.attn_dropout = nn.Dropout(args.dropout)
self.resid_dropout = nn.Dropout(args.dropout)
self.dropout = args.dropout
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
def forward(self,
x: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor], # 修改为接收cos和sin
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache=False,
attention_mask: Optional[torch.Tensor] = None):
bsz, seq_len, _ = x.shape
xq, xk, xv = self.q_proj(x), self.k_proj(x), self.v_proj(x)
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
cos, sin = position_embeddings
xq, xk = apply_rotary_pos_emb(xq, xk, cos, sin)
# kv_cache实现
if past_key_value is not None:
xk = torch.cat([past_key_value[0], xk], dim=1)
xv = torch.cat([past_key_value[1], xv], dim=1)
past_kv = (xk, xv) if use_cache else None
xq, xk, xv = (
xq.transpose(1, 2),
repeat_kv(xk, self.n_rep).transpose(1, 2),
repeat_kv(xv, self.n_rep).transpose(1, 2)
)
if self.flash and (seq_len > 1) and (past_key_value is None) and (attention_mask is None or torch.all(attention_mask == 1)):
output = F.scaled_dot_product_attention(xq, xk, xv, dropout_p=self.dropout if self.training else 0.0, is_causal=True)
else:
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
scores[:, :, :, -seq_len:] += torch.triu(torch.full((seq_len, seq_len), float("-inf"), device=scores.device), diagonal=1)
if attention_mask is not None:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = (1.0 - extended_attention_mask) * -1e9
scores = scores + extended_attention_mask
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
output = scores @ xv
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
output = self.resid_dropout(self.o_proj(output))
return output, past_kv
class FeedForward(nn.Module):
def __init__(self, config: MiniMindConfig):
super().__init__()
if config.intermediate_size is None:
intermediate_size = int(config.hidden_size * 8 / 3)
config.intermediate_size = 64 * ((intermediate_size + 64 - 1) // 64)
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.dropout = nn.Dropout(config.dropout)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
return self.dropout(self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)))
class MoEGate(nn.Module):
def __init__(self, config: MiniMindConfig):
super().__init__()
self.config = config
self.top_k = config.num_experts_per_tok
self.n_routed_experts = config.n_routed_experts
self.scoring_func = config.scoring_func
self.alpha = config.aux_loss_alpha
self.seq_aux = config.seq_aux
self.norm_topk_prob = config.norm_topk_prob
self.gating_dim = config.hidden_size
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
self.reset_parameters()
def reset_parameters(self) -> None:
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, hidden_states):
bsz, seq_len, h = hidden_states.shape
hidden_states = hidden_states.view(-1, h)
logits = F.linear(hidden_states, self.weight, None)
if self.scoring_func == 'softmax':
scores = logits.softmax(dim=-1)
else:
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
if self.top_k > 1 and self.norm_topk_prob:
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
topk_weight = topk_weight / denominator
if self.training and self.alpha > 0.0:
scores_for_aux = scores
aux_topk = self.top_k
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
if self.seq_aux:
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
ce.scatter_add_(1, topk_idx_for_aux_loss,
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(
seq_len * aux_topk / self.n_routed_experts)
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
else:
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
ce = mask_ce.float().mean(0)
Pi = scores_for_aux.mean(0)
fi = ce * self.n_routed_experts
aux_loss = (Pi * fi).sum() * self.alpha
else:
aux_loss = scores.new_zeros(1).squeeze()
return topk_idx, topk_weight, aux_loss
class MOEFeedForward(nn.Module):
def __init__(self, config: MiniMindConfig):
super().__init__()
self.config = config
self.experts = nn.ModuleList([
FeedForward(config)
for _ in range(config.n_routed_experts)
])
self.gate = MoEGate(config)
if config.n_shared_experts > 0:
self.shared_experts = nn.ModuleList([
FeedForward(config)
for _ in range(config.n_shared_experts)
])
def forward(self, x):
identity = x
orig_shape = x.shape
bsz, seq_len, _ = x.shape
# 使用门控机制选择专家
topk_idx, topk_weight, aux_loss = self.gate(x)
x = x.view(-1, x.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if self.training:
x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
y = torch.empty_like(x, dtype=x.dtype)
for i, expert in enumerate(self.experts):
expert_out = expert(x[flat_topk_idx == i])
if expert_out.shape[0] > 0: y[flat_topk_idx == i] = expert_out.to(y.dtype)
else: y[flat_topk_idx == i] = expert_out.to(y.dtype) + 0 * sum(p.sum() for p in expert.parameters())
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
y = y.view(*orig_shape)
else:
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
if self.config.n_shared_experts > 0:
for expert in self.shared_experts:
y = y + expert(identity)
self.aux_loss = aux_loss
return y
@torch.no_grad()
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
expert_cache = torch.zeros_like(x)
idxs = flat_expert_indices.argsort()
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
token_idxs = idxs // self.config.num_experts_per_tok
# 当tokens_per_expert = [6, 15, 20, 26],tokens_per_expert.shape[0]即为专家数量(此时为4)
# 且token_idxs = [3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...] 时
# 意味token_idxs[:6] -> [3, 7, 19, 21, 24, 25]这6个位置属于专家0处理的token(每个token有可能被多个专家处理,这取决于num_experts_per_tok)
# 接下来9个位置token_idxs[6:15] -> [4, 5, 6, 10, 11, 12...]属于专家1处理的token...依此类推
for i, end_idx in enumerate(tokens_per_expert):
start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
if start_idx == end_idx:
continue
expert = self.experts[i]
exp_token_idx = token_idxs[start_idx:end_idx]
expert_tokens = x[exp_token_idx]
expert_out = expert(expert_tokens).to(expert_cache.dtype)
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)
return expert_cache
class MiniMindBlock(nn.Module):
def __init__(self, layer_id: int, config: MiniMindConfig):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_dim = config.hidden_size // config.num_attention_heads
self.self_attn = Attention(config)
self.layer_id = layer_id
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.mlp = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
def forward(self, hidden_states, position_embeddings, past_key_value=None, use_cache=False, attention_mask=None):
residual = hidden_states
hidden_states, present_key_value = self.self_attn(
self.input_layernorm(hidden_states), position_embeddings,
past_key_value, use_cache, attention_mask
)
hidden_states += residual
hidden_states = hidden_states + self.mlp(self.post_attention_layernorm(hidden_states))
return hidden_states, present_key_value
class MiniMindModel(nn.Module):
def __init__(self, config: MiniMindConfig):
super().__init__()
self.config = config
self.vocab_size, self.num_hidden_layers = config.vocab_size, config.num_hidden_layers
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.dropout = nn.Dropout(config.dropout)
self.layers = nn.ModuleList([MiniMindBlock(l, config) for l in range(self.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
freqs_cos, freqs_sin = precompute_freqs_cis(dim=config.hidden_size // config.num_attention_heads,
end=config.max_position_embeddings, rope_base=config.rope_theta,
rope_scaling=config.rope_scaling)
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
def forward(self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
use_cache: bool = False,
**kwargs):
batch_size, seq_length = input_ids.shape
if hasattr(past_key_values, 'layers'): past_key_values = None
past_key_values = past_key_values or [None] * len(self.layers)
start_pos = past_key_values[0][0].shape[1] if past_key_values[0] is not None else 0
hidden_states = self.dropout(self.embed_tokens(input_ids))
position_embeddings = (
self.freqs_cos[start_pos:start_pos + seq_length],
self.freqs_sin[start_pos:start_pos + seq_length]
)
presents = []
for layer_idx, (layer, past_key_value) in enumerate(zip(self.layers, past_key_values)):
hidden_states, present = layer(
hidden_states,
position_embeddings,
past_key_value=past_key_value,
use_cache=use_cache,
attention_mask=attention_mask
)
presents.append(present)
hidden_states = self.norm(hidden_states)
aux_loss = sum([l.mlp.aux_loss for l in self.layers if isinstance(l.mlp, MOEFeedForward)], hidden_states.new_zeros(1).squeeze())
return hidden_states, presents, aux_loss
class MiniMindForCausalLM(PreTrainedModel, GenerationMixin):
config_class = MiniMindConfig
def __init__(self, config: MiniMindConfig = None):
self.config = config or MiniMindConfig()
super().__init__(self.config)
self.model = MiniMindModel(self.config)
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False)
self.model.embed_tokens.weight = self.lm_head.weight
def forward(self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
use_cache: bool = False,
logits_to_keep: Union[int, torch.Tensor] = 0,
**args):
hidden_states, past_key_values, aux_loss = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
**args
)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss = F.cross_entropy(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1), ignore_index=-100)
output = CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=past_key_values, hidden_states=hidden_states)
output.aux_loss = aux_loss
return output