本文基于CANN开源社区的ops-nn和amct仓库进行技术解读
CANN组织地址:https://atomgit.com/cann
ops-nn仓库地址:https://atomgit.com/cann/ops-nn
amct仓库地址:https://atomgit.com/cann/amct
前言
模型压缩和算子优化是提升模型性能的两个关键方向。Ops-NN(神经网络算子库)与AMCT(模型压缩工具)如何协同工作?如何实现最优的模型压缩和算子优化?
本文探讨Ops-NN与AMCT的协同优化机制,以及如何通过两者的配合实现高性能的模型部署。
什么是组合压缩算子优化
Ops-NN与AMCT的组合优化:
没有协同优化:
算子优化和模型压缩各自进行 → 性能提升有限
有协同优化:
算子优化和模型压缩协同进行 → 性能大幅提升
架构:
原始模型
↓
AMCT(模型压缩)
↓
Ops-NN(算子优化)
↓
NPU硬件
核心概念
1. 算子感知压缩
算子感知压缩:
c
#include "ops_nn/ops_nn.h"
#include "amct/amct.h"
// 算子感知压缩配置
typedef struct {
// AMCT配置
quantization_config_t quant_config;
pruning_config_t prune_config;
// Ops-NN配置
operator_optimization_config_t op_config;
// 协同优化目标
optimization_target_t target;
} operator_aware_compression_config_t;
// 优化目标
typedef enum {
OPTIMIZE_TARGET_ACCURACY, // 精度优先
OPTIMIZE_TARGET_LATENCY, // 延迟优先
OPTIMIZE_TARGET_MEMORY, // 内存优先
OPTIMIZE_TARGET_POWER // 功耗优先
} optimization_target_t;
2. 量化感知优化
量化感知优化:
c
// 量化感知优化
typedef struct {
quantization_method_t method; // 量化方法
quantization_scheme_t scheme; // 量化方案
int bits; // 量化位数
bool enable_fusion; // 启用算子融合
bool enable_replacement; // 启用算子替换
} quantization_aware_config_t;
// 量化方法
typedef enum {
QUANT_METHOD_POST_TRAINING, // 训练后量化
QUANT_METHOD_QUANT_AWARE, // 量化感知训练
QUANT_METHOD_OPERATOR_AWARE // 算子感知量化
} quantization_method_t;
3. 剪枝感知优化
剪枝感知优化:
c
// 剪枝感知优化
typedef struct {
pruning_method_t method; // 剪枝方法
pruning_strategy_t strategy; // 剪枝策略
float sparsity; // 稀疏度
bool enable_reorganization; // 启用重组
} pruning_aware_config_t;
// 剪枝方法
typedef enum {
PRUNING_METHOD_STRUCTURED, // 结构化剪枝
PRUNING_METHOD_UNSTRUCTURED, // 非结构化剪枝
PRUNING_METHOD_OPERATOR_AWARE // 算子感知剪枝
} pruning_method_t;
协同优化
1. 算子感知量化
c
// 算子感知量化
void operator_aware_quantization(const char *model_path, const char *output_path) {
// 加载模型
model_t *model = load_model(model_path);
// 分析模型中的算子
operator_analysis_t *analysis = analyze_operators(model);
printf("Operator Analysis:\n");
printf(" Total operators: %d\n", analysis->num_operators);
printf(" Quantizable operators: %d\n", analysis->quantizable_operators);
printf(" Non-quantizable operators: %d\n", analysis->non_quantizable_operators);
// 为每个算子选择最优的量化策略
for (int i = 0; i < analysis->num_operators; i++) {
operator_t *op = &analysis->operators[i];
if (op->is_quantizable) {
// 根据算子特性选择量化策略
if (op->type == OPERATOR_TYPE_CONV2D) {
op->quant_config.bits = 8;
op->quant_config.scheme = QUANTIZATION_SCHEME_AFFINE;
} else if (op->type == OPERATOR_TYPE_MATMUL) {
op->quant_config.bits = 8;
op->quant_config.scheme = QUANTIZATION_SCHEME_SYMMETRIC;
} else {
op->quant_config.bits = 16;
op->quant_config.scheme = QUANTIZATION_SCHEME_AFFINE;
}
}
}
// 执行算子感知量化
quantization_result_t *result = amct_operator_aware_quantize(model, analysis);
// 优化量化后的算子
optimize_quantized_operators(model, result);
// 保存模型
save_model(model, output_path);
printf("Operator-aware quantization completed\n");
printf(" Original size: %.2f MB\n", result->original_size / 1024 / 1024);
printf(" Quantized size: %.2f MB\n", result->quantized_size / 1024 / 1024);
printf(" Compression ratio: %.2f%%\n", result->compression_ratio * 100);
printf(" Accuracy loss: %.4f%%\n", result->accuracy_loss * 100);
}
2. 算子感知剪枝
c
// 算子感知剪枝
void operator_aware_pruning(const char *model_path, const char *output_path, float target_sparsity) {
// 加载模型
model_t *model = load_model(model_path);
// 分析模型中的算子
operator_analysis_t *analysis = analyze_operators(model);
// 为每个算子选择最优的剪枝策略
for (int i = 0; i < analysis->num_operators; i++) {
operator_t *op = &analysis->operators[i];
if (op->is_prunable) {
// 根据算子特性选择剪枝策略
if (op->type == OPERATOR_TYPE_CONV2D) {
op->prune_config.sparsity = target_sparsity;
op->prune_config.strategy = PRUNING_STRATEGY_STRUCTURED;
} else if (op->type == OPERATOR_TYPE_MATMUL) {
op->prune_config.sparsity = target_sparsity;
op->prune_config.strategy = PRUNING_STRATEGY_STRUCTURED;
} else {
op->prune_config.sparsity = target_sparsity * 0.5;
op->prune_config.strategy = PRUNING_STRATEGY_GLOBAL;
}
}
}
// 执行算子感知剪枝
pruning_result_t *result = amct_operator_aware_prune(model, analysis);
// 优化剪枝后的算子
optimize_pruned_operators(model, result);
// 保存模型
save_model(model, output_path);
printf("Operator-aware pruning completed\n");
printf(" Original parameters: %d\n", result->original_params);
printf(" Pruned parameters: %d\n", result->pruned_params);
printf(" Sparsity: %.2f%%\n", result->sparsity * 100);
printf(" Accuracy loss: %.4f%%\n", result->accuracy_loss * 100);
}
3. 算子融合与压缩
c
// 算子融合与压缩
void operator_fusion_and_compression(const char *model_path, const char *output_path) {
// 加载模型
model_t *model = load_model(model_path);
// 阶段1:算子分析
operator_analysis_t *analysis = analyze_operators(model);
// 阶段2:识别可融合的算子组
fusion_group_t *groups = identify_fusion_groups(model, analysis);
printf("Fusion Groups:\n");
for (int i = 0; i < groups->num_groups; i++) {
printf(" Group %d: ", i + 1);
for (int j = 0; j < groups->groups[i].num_operators; j++) {
printf("%s ", groups->groups[i].operators[j]->name);
}
printf("\n");
}
// 阶段3:融合算子
for (int i = 0; i < groups->num_groups; i++) {
// 融合算子组
operator_t *fused_op = fuse_operators(&groups->groups[i]);
// 替换原始算子
replace_operators(model, &groups->groups[i], fused_op);
}
// 阶段4:压缩融合后的模型
compress_model(model);
// 阶段5:优化融合算子
optimize_fused_operators(model);
// 保存模型
save_model(model, output_path);
printf("Operator fusion and compression completed\n");
}
使用场景
场景一:CNN模型优化
c
// CNN模型优化
void optimize_cnn_model(const char *model_path) {
// 加载模型
model_t *model = load_model(model_path);
// 阶段1:算子分析
operator_analysis_t *analysis = analyze_operators(model);
// 阶段2:算子感知量化
for (int i = 0; i < analysis->num_operators; i++) {
operator_t *op = &analysis->operators[i];
if (op->type == OPERATOR_TYPE_CONV2D) {
// 卷积层量化
op->quant_config.bits = 8;
op->quant_config.scheme = QUANTIZATION_SCHEME_AFFINE;
amct_quantize_operator(op, &op->quant_config);
} else if (op->type == OPERATOR_TYPE_POOLING) {
// 池化层优化
optimize_pooling_operator(op);
} else if (op->type == OPERATOR_TYPE_ACTIVATION) {
// 激活层优化
optimize_activation_operator(op);
}
}
// 阶段3:算子融合
fusion_group_t *groups = identify_fusion_groups(model, analysis);
for (int i = 0; i < groups->num_groups; i++) {
operator_t *fused_op = fuse_operators(&groups->groups[i]);
replace_operators(model, &groups->groups[i], fused_op);
}
// 保存优化后的模型
save_model(model, "optimized_cnn.om");
}
场景二:Transformer模型优化
c
// Transformer模型优化
void optimize_transformer_model(const char *model_path) {
// 加载模型
model_t *model = load_model(model_path);
// 阶段1:算子分析
operator_analysis_t *analysis = analyze_operators(model);
// 阶段2:算子感知量化
for (int i = 0; i < analysis->num_operators; i++) {
operator_t *op = &analysis->operators[i];
if (op->type == OPERATOR_TYPE_MATMUL) {
// 矩阵乘法量化
op->quant_config.bits = 8;
op->quant_config.scheme = QUANTIZATION_SCHEME_SYMMETRIC;
amct_quantize_operator(op, &op->quant_config);
} else if (op->type == OPERATOR_TYPE_LAYER_NORM) {
// 层归一化优化
optimize_layer_norm_operator(op);
} else if (op->type == OPERATOR_TYPE_SOFTMAX) {
// Softmax优化
optimize_softmax_operator(op);
}
}
// 阶段3:算子融合
fusion_group_t *groups = identify_fusion_groups(model, analysis);
for (int i = 0; i < groups->num_groups; i++) {
operator_t *fused_op = fuse_operators(&groups->groups[i]);
replace_operators(model, &groups->groups[i], fused_op);
}
// 保存优化后的模型
save_model(model, "optimized_transformer.om");
}
场景三:端到端优化
c
// 端到端优化
void end_to_end_optimization(const char *model_path, Dataset *test_dataset) {
// 加载模型
model_t *model = load_model(model_path);
// 阶段1:算子分析
operator_analysis_t *analysis = analyze_operators(model);
// 阶段2:自动优化策略选择
optimization_strategy_t *strategy = select_optimization_strategy(analysis);
// 阶段3:执行优化
for (int i = 0; i < strategy->num_steps; i++) {
optimization_step_t *step = &strategy->steps[i];
switch (step->type) {
case OPTIMIZATION_STEP_QUANTIZATION:
execute_quantization_step(model, step);
break;
case OPTIMIZATION_STEP_PRUNING:
execute_pruning_step(model, step);
break;
case OPTIMIZATION_STEP_FUSION:
execute_fusion_step(model, step);
break;
case OPTIMIZATION_STEP_REPLACEMENT:
execute_replacement_step(model, step);
break;
}
// 验证优化结果
validation_result_t *result = validate_optimization(model, test_dataset);
if (result->accuracy_loss > 0.01) {
printf("Warning: Accuracy loss too large (%.4f%%)\n", result->accuracy_loss * 100);
break;
}
}
// 保存优化后的模型
save_model(model, "optimized_model.om");
}
性能优化
1. 量化算子优化
c
// 量化算子优化
void optimize_quantized_operators(model_t *model, quantization_result_t *result) {
// 优化量化卷积算子
for (int i = 0; i < result->num_quantized_ops; i++) {
operator_t *op = result->quantized_ops[i];
if (op->type == OPERATOR_TYPE_CONV2D) {
// 使用量化卷积算子
replace_with_quantized_conv(op);
} else if (op->type == OPERATOR_TYPE_MATMUL) {
// 使用量化矩阵乘法算子
replace_with_quantized_matmul(op);
}
}
}
2. 剪枝算子优化
c
// 剪枝算子优化
void optimize_pruned_operators(model_t *model, pruning_result_t *result) {
// 优化剪枝后的算子
for (int i = 0; i < result->num_pruned_ops; i++) {
operator_t *op = result->pruned_ops[i];
if (op->type == OPERATOR_TYPE_CONV2D) {
// 使用稀疏卷积算子
replace_with_sparse_conv(op);
} else if (op->type == OPERATOR_TYPE_MATMUL) {
// 使用稀疏矩阵乘法算子
replace_with_sparse_matmul(op);
}
}
}
3. 融合算子优化
c
// 融合算子优化
void optimize_fused_operators(model_t *model) {
// 获取融合算子
operator_list_t *fused_ops = get_fused_operators(model);
// 优化每个融合算子
for (int i = 0; i < fused_ops->count; i++) {
operator_t *op = fused_ops->operators[i];
// 使用优化的融合算子实现
optimize_fused_operator_implementation(op);
}
}
与其他组件的关系
| 组件 | 关系 |
|---|---|
| ops-nn | 神经网络算子 |
| amct | 模型压缩 |
| runtime | 运行时支持 |
关系:
原始模型
↓
AMCT(模型压缩)
↓
Ops-NN(算子优化)
↓
Runtime(运行时)
↓
NPU硬件
调试技巧
1. 算子性能分析
c
// 算子性能分析
void analyze_operator_performance(model_t *model) {
// 执行模型
execute_model(model);
// 获取算子性能统计
operator_stats_t *stats = get_operator_stats(model);
printf("Operator Performance:\n");
for (int i = 0; i < stats->num_operators; i++) {
printf(" %s: %.2f ms (%.2f%%)\n",
stats->operators[i].name,
stats->operators[i].time,
stats->operators[i].percentage);
}
}
2. 压缩效果分析
c
// 压缩效果分析
void analyze_compression_effect(const char *original_path, const char *compressed_path) {
// 加载模型
model_t *original = load_model(original_path);
model_t *compressed = load_model(compressed_path);
// 分析压缩效果
compression_effect_t *effect = analyze_compression(original, compressed);
printf("Compression Effect:\n");
printf(" Size reduction: %.2f%%\n", effect->size_reduction * 100);
printf(" Accuracy loss: %.4f%%\n", effect->accuracy_loss * 100);
printf(" Latency improvement: %.2fx\n", effect->latency_improvement);
printf(" Throughput improvement: %.2fx\n", effect->throughput_improvement);
}
3. 优化策略验证
c
// 优化策略验证
void validate_optimization_strategy(const char *model_path, Dataset *test_dataset) {
// 加载模型
model_t *model = load_model(model_path);
// 测试不同的优化策略
optimization_strategy_t *strategies[] = {
create_accuracy_first_strategy(),
create_latency_first_strategy(),
create_memory_first_strategy()
};
for (int i = 0; i < 3; i++) {
// 复制模型
model_t *optimized = copy_model(model);
// 应用优化策略
apply_optimization_strategy(optimized, strategies[i]);
// 验证结果
validation_result_t *result = validate_optimization(optimized, test_dataset);
printf("Strategy %d:\n", i + 1);
printf(" Accuracy: %.4f\n", result->accuracy);
printf(" Latency: %.2f ms\n", result->latency * 1000);
printf(" Memory: %.2f MB\n", result->memory / 1024 / 1024);
}
}
常见问题
问题1:量化后精度下降
c
// 错误:量化位数过低
op->quant_config.bits = 4; // 精度太低!
// 正确:使用合理的量化位数
op->quant_config.bits = 8; // 合理
问题2:剪枝后性能下降
c
// 错误:剪枝过于激进
op->prune_config.sparsity = 0.9; // 太激进!
// 正确:使用合理的剪枝稀疏度
op->prune_config.sparsity = 0.5; // 合理
问题3:融合后内存增加
c
// 错误:融合策略不当
fuse_operators(&group); // 可能增加内存!
// 正确:使用合理的融合策略
if (can_fuse_without_memory_increase(&group)) {
fuse_operators(&group); // 安全
}
应用场景总结
场景一:CNN模型优化
用于CNN模型优化。
场景二:Transformer模型优化
用于Transformer模型优化。
场景三:端到端优化
用于端到端优化。
场景四:模型部署
用于模型部署。
总结
Ops-NN与AMCT的组合压缩算子优化:
- 算子感知压缩
- 量化感知优化
- 剪枝感知优化
- 算子融合
- 性能提升
通过神经网络算子和模型压缩的协同优化,实现了高性能的模型部署,是模型优化的重要工具。
相关链接
ops-nn仓库地址:https://atomgit.com/cann/ops-nn
amct仓库地址:https://atomgit.com/cann/amct
CANN组织地址:https://atomgit.com/cann
runtime仓库地址:https://atomgit.com/cann/runtime