本文基于CANN开源社区的pyasc和ascend-c仓库进行技术解读
CANN组织地址:https://atomgit.com/cann
pyasc仓库地址:https://atomgit.com/cann/pyasc
ascend-c仓库地址:https://atomgit.com/cann/ascend-c
前言
Python算子接口和C算子开发是NPU编程的两个重要层次。PyAsc(Python算子接口)与Ascend-C(C算子开发)如何协同工作?如何实现高效的Python算子接口和C算子开发?
本文探讨PyAsc与Ascend-C的协同机制,以及如何通过两者的配合实现高效的NPU编程。
什么是组合Python接口C算子开发
PyAsc与Ascend-C的组合:
没有协同:
Python接口和C算子开发各自独立 → 开发效率低 → 性能不佳
有协同:
Python接口和C算子开发协同 → 开发效率高 → 性能优化
架构:
Python应用
↓
PyAsc(Python算子接口)
↓
Ascend-C(C算子开发)
↓
NPU硬件
核心概念
1. Python算子接口
Python算子接口:
python
import pyasc
# 算子接口配置
class OperatorConfig:
def __init__(self):
self.name = None
self.input_shapes = []
self.output_shapes = []
self.attributes = {}
self.optimization_level = "basic"
# 创建Python算子接口
def create_python_operator_interface(config):
interface = pyasc.OperatorInterface(config.name)
# 设置输入
for shape in config.input_shapes:
interface.add_input(shape)
# 设置输出
for shape in config.output_shapes:
interface.add_output(shape)
# 设置属性
for key, value in config.attributes.items():
interface.add_attribute(key, value)
return interface
2. C算子开发
C算子开发:
c
#include "ascend_c/ascend_c.h"
// 算子开发配置
typedef struct {
char *name; // 算子名称
operator_type_t type; // 算子类型
input_spec_t *inputs; // 输入规格
output_spec_t *outputs; // 输出规格
attribute_spec_t *attributes; // 属性规格
optimization_level_t level; // 优化级别
} operator_dev_spec_t;
// 创建算子开发规格
operator_dev_spec_t *create_operator_dev_spec(char *name, operator_type_t type);
3. Python-C绑定
Python-C绑定:
c
// Python绑定配置
typedef struct {
bool enable_auto_binding; // 启用自动绑定
binding_strategy_t strategy; // 绑定策略
type_conversion_t conversion; // 类型转换
memory_management_t memory; // 内存管理
} binding_config_t;
// 创建Python绑定配置
binding_config_t *create_binding_config();
协同优化
1. Python算子接口开发
python
# Python算子接口开发
def develop_python_operator_interface():
# 阶段1:定义算子配置
print("Phase 1: Define Operator Configuration")
config = OperatorConfig()
config.name = "conv2d"
config.input_shapes = [(1, 3, 224, 224)] # NCHW
config.output_shapes = [(1, 64, 224, 224)]
config.attributes = {
"kernel_size": 3,
"stride": 1,
"padding": "SAME",
"activation": "ReLU"
}
config.optimization_level = "advanced"
print(f" Operator name: {config.name}")
print(f" Input shapes: {config.input_shapes}")
print(f" Output shapes: {config.output_shapes}")
# 阶段2:创建Python接口
print("\nPhase 2: Create Python Interface")
interface = create_python_operator_interface(config)
print(" Python interface created")
# 阶段3:定义算子函数
print("\nPhase 3: Define Operator Function")
@pyasc.operator
def conv2d(input_data, kernel_size, stride, padding, activation):
"""
2D卷积算子
Args:
input_data: 输入数据
kernel_size: 卷积核大小
stride: 步长
padding: 填充方式
activation: 激活函数
Returns:
输出数据
"""
# 调用C算子实现
return pyasc.call_c_operator("conv2d_c", input_data, kernel_size, stride, padding, activation)
print(" Operator function defined")
# 阶段4:注册算子
print("\nPhase 4: Register Operator")
pyasc.register_operator(conv2d, interface)
print(" Operator registered")
# 阶段5:测试算子
print("\nPhase 5: Test Operator")
# 准备测试数据
import numpy as np
input_data = np.random.randn(1, 3, 224, 224).astype(np.float32)
# 执行算子
output_data = conv2d(
input_data,
kernel_size=config.attributes["kernel_size"],
stride=config.attributes["stride"],
padding=config.attributes["padding"],
activation=config.attributes["activation"]
)
print(f" Input shape: {input_data.shape}")
print(f" Output shape: {output_data.shape}")
# 验证输出
if output_data.shape == tuple(config.output_shapes[0]):
print(" Output shape validation: PASSED")
else:
print(" Output shape validation: FAILED")
2. C算子开发
c
// C算子开发
void develop_c_operator() {
// 阶段1:定义算子规格
printf("Phase 1: Define Operator Specification\n");
operator_dev_spec_t *spec = create_operator_dev_spec("conv2d_c", OPERATOR_TYPE_CONV2D);
// 输入规格
input_spec_t *inputs = malloc(1 * sizeof(input_spec_t));
inputs[0].name = "input";
inputs[0].dtype = DATA_TYPE_FLOAT32;
inputs[0].shape[0] = -1; // batch size
inputs[0].shape[1] = 3; // channels
inputs[0].shape[2] = 224; // height
inputs[0].shape[3] = 224; // width
inputs[0].ndim = 4;
spec->inputs = inputs;
spec->num_inputs = 1;
// 输出规格
output_spec_t *outputs = malloc(1 * sizeof(output_spec_t));
outputs[0].name = "output";
outputs[0].dtype = DATA_TYPE_FLOAT32;
outputs[0].shape[0] = -1; // batch size
outputs[0].shape[1] = 64; // channels
outputs[0].shape[2] = 224; // height
outputs[0].shape[3] = 224; // width
outputs[0].ndim = 4;
spec->outputs = outputs;
spec->num_outputs = 1;
// 属性规格
attribute_spec_t *attributes = malloc(4 * sizeof(attribute_spec_t));
attributes[0].name = "kernel_size";
attributes[0].type = ATTRIBUTE_TYPE_INT;
attributes[0].default_value.int_value = 3;
attributes[1].name = "stride";
attributes[1].type = ATTRIBUTE_TYPE_INT;
attributes[1].default_value.int_value = 1;
attributes[2].name = "padding";
attributes[2].type = ATTRIBUTE_TYPE_STRING;
attributes[2].default_value.string_value = "SAME";
attributes[3].name = "activation";
attributes[3].type = ATTRIBUTE_TYPE_STRING;
attributes[3].default_value.string_value = "ReLU";
spec->attributes = attributes;
spec->num_attributes = 4;
spec->level = OPTIMIZATION_LEVEL_ADVANCED;
printf(" Operator specification defined\n");
// 阶段2:实现算子
printf("\nPhase 2: Implement Operator\n");
// 生成算子代码
char *operator_code = generate_operator_code(spec);
printf(" Operator code generated\n");
// 阶段3:编译算子
printf("\nPhase 3: Compile Operator\n");
bool compiled = compile_operator_code(operator_code);
if (compiled) {
printf(" Operator compilation: SUCCESS\n");
} else {
printf(" Operator compilation: FAILED\n");
return;
}
// 阶段4:测试算子
printf("\nPhase 4: Test Operator\n");
// 准备测试数据
int batch_size = 1;
int height = 224;
int width = 224;
float *input = malloc(batch_size * 3 * height * width * sizeof(float));
float *output = malloc(batch_size * 64 * height * width * sizeof(float));
initialize_random(input, batch_size * 3 * height * width);
// 执行算子
execute_operator("conv2d_c", input, output);
printf(" Operator executed\n");
// 阶段5:验证输出
printf("\nPhase 5: Verify Output\n");
bool is_valid = validate_output(output, spec->outputs);
if (is_valid) {
printf(" Output validation: PASSED\n");
} else {
printf(" Output validation: FAILED\n");
}
// 清理资源
free(input);
free(output);
destroy_operator_dev_spec(spec);
}
3. Python-C绑定
c
// Python-C绑定
void create_python_c_binding() {
// 阶段1:创建绑定配置
printf("Phase 1: Create Binding Configuration\n");
binding_config_t *config = create_binding_config();
config->enable_auto_binding = true;
config->strategy = BINDING_STRATEGY_AUTOMATIC;
config->conversion.enable_type_conversion = true;
config->conversion.enable_shape_conversion = true;
config->memory.enable_auto_memory_management = true;
printf(" Binding configuration created\n");
// 阶段2:加载C算子
printf("\nPhase 2: Load C Operator\n");
operator_dev_spec_t *spec = load_operator_spec("conv2d_c");
printf(" C operator loaded\n");
printf(" Operator name: %s\n", spec->name);
// 阶段3:生成Python绑定
printf("\nPhase 3: Generate Python Binding\n");
python_binding_t *binding = generate_python_binding(spec, config);
printf(" Python binding generated\n");
// 阶段4:导出Python模块
printf("\nPhase 4: Export Python Module\n");
export_python_module(binding, "pyasc_operators");
printf(" Python module exported\n");
// 阶段5:测试绑定
printf("\nPhase 5: Test Binding\n");
// 测试Python调用
char *test_code = "import pyasc_operators\n"
"import numpy as np\n"
"input_data = np.random.randn(1, 3, 224, 224).astype(np.float32)\n"
"output = pyasc_operators.conv2d_c(input_data, 3, 1, 'SAME', 'ReLU')\n"
"print('Output shape:', output.shape)";
bool tested = test_python_binding(test_code);
if (tested) {
printf(" Binding test: PASSED\n");
} else {
printf(" Binding test: FAILED\n");
}
}
使用场景
场景一:自定义算子开发
python
# 自定义算子开发
def develop_custom_operator():
# 阶段1:定义Python接口
print("Phase 1: Define Python Interface")
config = OperatorConfig()
config.name = "custom_conv2d"
config.input_shapes = [(1, 3, 224, 224)]
config.output_shapes = [(1, 64, 224, 224)]
config.attributes = {
"kernel_size": 3,
"stride": 1,
"padding": "SAME",
"activation": "ReLU",
"use_bias": True
}
config.optimization_level = "advanced"
interface = create_python_operator_interface(config)
# 阶段2:实现Python包装器
print("\nPhase 2: Implement Python Wrapper")
@pyasc.operator
def custom_conv2d(input_data, kernel_size, stride, padding, activation, use_bias):
"""
自定义2D卷积算子
Args:
input_data: 输入数据
kernel_size: 卷积核大小
stride: 步长
padding: 填充方式
activation: 激活函数
use_bias: 是否使用偏置
Returns:
输出数据
"""
# 前处理
if padding == "SAME":
input_data = pad_same(input_data, kernel_size)
# 调用C算子
output = pyasc.call_c_operator("custom_conv2d_c", input_data, kernel_size, stride, activation, use_bias)
# 后处理
if activation == "ReLU":
output = relu(output)
return output
# 阶段3:注册算子
print("\nPhase 3: Register Operator")
pyasc.register_operator(custom_conv2d, interface)
# 阶段4:测试算子
print("\nPhase 4: Test Operator")
import numpy as np
input_data = np.random.randn(1, 3, 224, 224).astype(np.float32)
output = custom_conv2d(
input_data,
kernel_size=3,
stride=1,
padding="SAME",
activation="ReLU",
use_bias=True
)
print(f" Input shape: {input_data.shape}")
print(f" Output shape: {output.shape}")
if output.shape == (1, 64, 224, 224):
print(" Output shape validation: PASSED")
else:
print(" Output shape validation: FAILED")
场景二:混合编程
c
// 混合编程
void hybrid_programming() {
// 阶段1:创建混合编程环境
printf("Phase 1: Create Hybrid Programming Environment\n");
// 初始化Python环境
initialize_python_environment();
// 加载PyAsc模块
load_pyasc_module();
printf(" Hybrid programming environment created\n");
// 阶段2:定义Python接口
printf("\nPhase 2: Define Python Interface\n");
// 定义Python接口
char *python_code = "import pyasc\n"
"\n"
"@pyasc.operator\n"
"def hybrid_conv2d(input_data, kernel_size, stride):\n"
" # Python预处理\n"
" input_data = normalize(input_data)\n"
" \n"
" # 调用C算子\n"
" output = pyasc.call_c_operator('conv2d_c', input_data, kernel_size, stride)\n"
" \n"
" # Python后处理\n"
" output = denormalize(output)\n"
" \n"
" return output\n";
execute_python_code(python_code);
printf(" Python interface defined\n");
// 阶段3:测试混合编程
printf("\nPhase 3: Test Hybrid Programming\n");
// 准备测试数据
int batch_size = 1;
int height = 224;
int width = 224;
float *input = malloc(batch_size * 3 * height * width * sizeof(float));
initialize_random(input, batch_size * 3 * height * width);
// 执行混合编程
char *test_code = "import numpy as np\n"
"input_data = np.random.randn(1, 3, 224, 224).astype(np.float32)\n"
"output = hybrid_conv2d(input_data, 3, 1)\n"
"print('Output shape:', output.shape)";
bool tested = test_hybrid_programming(test_code);
if (tested) {
printf(" Hybrid programming test: PASSED\n");
} else {
printf(" Hybrid programming test: FAILED\n");
}
// 清理资源
free(input);
}
场景三:性能优化
python
# 性能优化
def performance_optimization():
# 阶段1:基线测试
print("Phase 1: Baseline Test")
import numpy as np
import time
# 准备测试数据
input_data = np.random.randn(1, 3, 224, 224).astype(np.float32)
# Python实现
start = time.time()
for i in range(100):
output = conv2d_python(input_data, 3, 1, "SAME", "ReLU")
python_time = time.time() - start
print(f" Python implementation: {python_time:.2f} s")
# 阶段2:C实现优化
print("\nPhase 2: C Implementation Optimization")
# 测试不同优化级别
optimization_levels = ["basic", "intermediate", "advanced"]
for level in optimization_levels:
print(f"\n Testing optimization level: {level}")
# 配置优化级别
config.optimization_level = level
# 生成优化代码
optimized_code = generate_optimized_code(config)
# 编译和测试
compiled = compile_operator_code(optimized_code)
if compiled:
# 测试性能
start = time.time()
for i in range(100):
output = pyasc.call_c_operator("conv2d_c", input_data, 3, 1, "SAME", "ReLU")
c_time = time.time() - start
print(f" Performance: {c_time:.2f} s")
print(f" Speedup: {python_time / c_time:.2f}x")
# 阶段3:混合优化
print("\nPhase 3: Hybrid Optimization")
# 使用Python进行预处理,C进行计算
@pyasc.operator
def hybrid_optimized_conv2d(input_data, kernel_size, stride):
# Python预处理(快速)
input_data = normalize(input_data)
# C计算(高效)
output = pyasc.call_c_operator("conv2d_c_optimized", input_data, kernel_size, stride)
# Python后处理(快速)
output = denormalize(output)
return output
# 测试混合优化性能
start = time.time()
for i in range(100):
output = hybrid_optimized_conv2d(input_data, 3, 1)
hybrid_time = time.time() - start
print(f" Hybrid optimization: {hybrid_time:.2f} s")
print(f" Speedup: {python_time / hybrid_time:.2f}x")
性能优化
1. 数据传输优化
python
# 数据传输优化
def optimize_data_transfer():
# 启用零拷贝
pyasc.enable_zero_copy()
# 使用共享内存
pyasc.use_shared_memory()
# 批量传输
def batch_transfer(data_list):
return pyasc.batch_transfer_to_c(data_list)
2. 内存管理优化
c
// 内存管理优化
void optimize_memory_management() {
// 启用内存池
enable_memory_pool();
// 自动内存管理
binding_config_t *config = create_binding_config();
config->memory.enable_auto_memory_management = true;
config->memory.enable_reference_counting = true;
// 优化内存布局
optimize_memory_layout();
}
3. 并行执行优化
python
# 并行执行优化
def optimize_parallel_execution():
# 启用多线程
pyasc.enable_multithreading()
# 并行执行
from concurrent.futures import ThreadPoolExecutor
def parallel_compute(input_data_list):
with ThreadPoolExecutor(max_workers=4) as executor:
outputs = list(executor.map(
lambda data: pyasc.call_c_operator("conv2d_c", data, 3, 1, "SAME", "ReLU"),
input_data_list
))
return outputs
与其他组件的关系
| 组件 | 关系 |
|---|---|
| pyasc | Python算子接口 |
| ascend-c | C算子开发 |
| runtime | 运行时支持 |
| ops-nn | 神经网络算子 |
关系:
Python应用
↓
PyAsc(Python算子接口)
↓
Ascend-C(C算子开发)
↓
Runtime(运行时)
↓
NPU硬件
调试技巧
1. Python调试
python
# Python调试
def debug_python_operator():
# 启用调试模式
pyasc.enable_debug_mode()
# 设置断点
pyasc.set_breakpoint("conv2d", 100)
# 单步执行
pyasc.step_through()
# 查看变量
pyasc.inspect_variables()
2. C调试
c
// C调试
void debug_c_operator() {
// 启用调试模式
enable_debug_mode();
// 设置断点
set_breakpoint("conv2d_c", 100);
// 单步执行
step_through();
// 查看变量
inspect_variables();
}
3. 绑定调试
c
// 绑定调试
void debug_binding() {
// 检查绑定状态
binding_status_t *status = check_binding_status();
printf("Binding Status:\n");
printf(" Loaded operators: %d\n", status->num_operators);
printf(" Loaded functions: %d\n", status->num_functions);
printf(" Memory usage: %d MB\n", status->memory_usage / 1024 / 1024);
}
常见问题
问题1:Python调用失败
python
# 错误:算子未注册
output = conv2d(input_data) # 未注册!
# 正确:先注册算子
pyasc.register_operator(conv2d, interface)
output = conv2d(input_data) # 成功
问题2:类型转换错误
c
// 错误:类型不匹配
float *input = malloc(size);
execute_operator("conv2d_c", input, output); // 可能错误!
// 正确:检查类型
if (check_type_compatibility(input, spec->inputs[0].dtype)) {
execute_operator("conv2d_c", input, output); // 安全
}
问题3:性能不佳
python
# 错误:未使用优化
output = pyasc.call_c_operator("conv2d_c", input_data, 3, 1) # 未优化!
# 正确:使用优化
config.optimization_level = "advanced"
output = pyasc.call_c_operator("conv2d_c_optimized", input_data, 3, 1) # 优化后,快!
应用场景总结
场景一:自定义算子开发
用于自定义算子开发。
场景二:混合编程
用于混合编程。
场景三:性能优化
用于性能优化。
场景四:快速原型开发
用于快速原型开发。
总结
PyAsc与Ascend-C的组合:
- Python算子接口
- C算子开发
- Python-C绑定
- 混合编程
- 性能优化
通过Python算子接口和C算子开发的协同,实现了高效的NPU编程,是算子开发的重要工具。
相关链接
pyasc仓库地址:https://atomgit.com/cann/pyasc
ascend-c仓库地址:https://atomgit.com/cann/ascend-c
CANN组织地址:https://atomgit.com/cann
runtime仓库地址:https://atomgit.com/cann/runtime