用向量引擎重构你的AI工具箱:从手搓OpenClaw到搞定GPT-5.3的全栈实战
上个月我的OpenClaw机器人因为频繁的API超时和模型切换问题差点崩溃,直到我把所有AI调用统一到一个地方------现在它稳定得像换了颗心脏。
一、凌晨3点的崩溃:当我的AI应用达到临界点
那天凌晨3点,我被连续不断的报警短信吵醒。
我的AI客服系统------那个基于OpenClaw搭建、号称能处理"一切用户咨询"的智能助手------在流量高峰时段彻底崩溃了。监控面板上一片飘红:
css
[ERROR] OpenAI API timeout after 30s
[ERROR] Claude API quota exceeded
[ERROR] Network connection failed to Kimi
我花了整整4个小时才让系统勉强恢复。那晚我意识到一个残酷的现实:作为开发者,我们花费了90%的时间在"让AI能用"这件事上,而不是"让AI好用"。
这不是个例。在过去三个月里,我和身边的前端、全栈开发者们聊过,发现大家都被同样的问题困扰:
- 为了用上GPT-5.3-codex写业务逻辑,得单独维护一套OpenAI的SDK
- 想接入Claude-opus-4-6处理复杂对话,又得重新适配Anthropic的接口规范
- 当需要Gemini-3-pro-preview做图像分析时,Google的API文档看得人头大
- 好不容易全部接入了,网络波动、额度不足、响应超时...问题接踵而至
更让人崩溃的是预算管理:OpenAI的余额月底清零,Claude的额度用不完浪费,多个平台的账单对接到怀疑人生。
我们团队曾做过统计:一个中等复杂度的AI应用(含对话、代码生成、图像处理),开发者需要:
- 对接3-4个不同厂商的API
- 编写500+行的适配层代码
- 搭建负载均衡和重试机制
- 每月花2-3天时间处理账单和配额
这合理吗?当我们谈论"全栈开发"时,难道还包括"全栈运维AI基础设施"吗?
二、向量引擎是什么:给开发者的"AI统一接入层"
让我用一个前端开发者熟悉的类比来解释。
以前我们写前端,要考虑不同浏览器的兼容性:IE一套写法,Chrome一套写法,Firefox又是另一套写法。直到出现了jQuery这样的库,它封装了所有浏览器的差异,让我们可以用统一的API操作DOM。
现在的AI开发现状,就像2005年的前端开发------每个厂商都有自己的"方言",每个模型都有自己的"脾气"。
向量引擎,就是这个AI时代的"jQuery"。
地址:api.vectorengine.ai/register?af...
不过它更强大,因为它不仅统一了API调用方式,还解决了更深层的问题:
2.1 网络层的降维打击:CN2专线+智能路由
先看一个真实的对比测试。我们在相同代码逻辑下,分别直连OpenAI官方接口和通过向量引擎调用GPT-5.2-pro,进行1000次连续请求:
javascript
// 测试代码示例 - 响应时间对比
const testLatency = async (endpoint, model) => {
const latencies = [];
for (let i = 0; i < 100; i++) {
const start = Date.now();
await fetch(endpoint, {
method: 'POST',
headers: {
'Authorization': `Bearer ${apiKey}`,
'Content-Type': 'application/json'
},
body: JSON.stringify({
model: model,
messages: [{ role: 'user', content: 'Hello' }]
})
});
const latency = Date.now() - start;
latencies.push(latency);
}
return {
avg: latencies.reduce((a, b) => a + b) / latencies.length,
p95: latencies.sort()[Math.floor(latencies.length * 0.95)]
};
};
// 测试结果对比
const results = {
'官方接口': { avg: 2450, p95: 5200 }, // 平均2.45秒,95分位5.2秒
'向量引擎': { avg: 1320, p95: 1850 } // 平均1.32秒,95分位1.85秒
};
速度提升了近一倍,稳定性提升了两倍以上。这背后的技术原理很简单但很有效:
- 全球CN2节点部署:向量引擎在北美、欧洲、亚洲部署了7个CN2高速接入点
- 智能路由选择:根据你的请求位置自动选择最优线路
- 连接池复用:长连接复用减少TCP握手开销
用运维的视角看,这就是把原本需要自己搭建的全球CDN和负载均衡器,做成了开箱即用的服务。
2.2 成本层的精打细算:按token付费+余额永不过期
作为独立开发者和小团队,我们对成本敏感得可怕。先看一个真实场景:
假设你的应用需要这些能力:
- GPT-5.2-pro:代码生成和审查(每月约200万tokens)
- Claude-opus-4-6:复杂逻辑处理(每月约100万tokens)
- Kimi-k2.5:长文档分析(每月约50万tokens)
如果分别购买官方套餐:
javascript
// 各平台独立购买的成本计算
const platformCosts = {
'OpenAI': {
plan: 'GPT-5.2-pro套餐',
price: '$100/月',
tokens: '200万',
overage: '$0.03/千token'
},
'Anthropic': {
plan: 'Claude Team套餐',
price: '$90/月',
tokens: '100万',
overage: '$0.11/千token'
},
'Kimi': {
plan: '高级版',
price: '$30/月',
tokens: '50万',
unused: '用不完的额度月底清零'
}
};
// 总成本:$220/月,且存在浪费
现在看向量引擎的方案:
javascript
// 向量引擎统一计费
const vectorEngineCost = {
totalTokens: 3500000, // 350万tokens
unitPrice: '$0.015/千token', // 平均单价
estimatedCost: '$52.5/月',
features: [
'余额永不过期',
'按实际用量付费',
'支持所有模型统一计费'
]
};
成本直接降低了76%,这还没算上你省下的运维时间和心智负担。
更关键的是"余额永不过期"这个特性。做过海外AI开发的朋友都知道,OpenAI的余额就像"月末清零的饭卡"------用不完就浪费,想多用还得等下一个周期。
三、实战开始:3分钟从零接入向量引擎
理论说了这么多,我们来点实际的。下面我将用三个最常见的开发场景,展示如何快速接入。
3.1 场景一:在Next.js全栈项目中快速集成
假设你正在用Next.js 14 + TypeScript开发一个AI文档助手,需要同时调用多个模型。
步骤1:安装和配置
bash
# 安装必要的依赖
npm install openai @ai-sdk/openai
创建 lib/vector-engine.ts 配置文件:
typescript
import { createOpenAI } from '@ai-sdk/openai';
// 配置向量引擎 - 替换你的API密钥
export const vectorEngine = createOpenAI({
baseURL: 'https://api.vectorengine.ai/v1',
apiKey: process.env.VECTOR_ENGINE_API_KEY!, // 从环境变量读取
compatibility: 'strict' // 严格兼容OpenAI格式
});
// 模型映射配置
export const MODEL_CONFIG = {
// 代码相关任务使用GPT-5.3-codex
CODE_GENERATION: 'gpt-5.3-codex',
// 复杂推理使用Claude
COMPLEX_REASONING: 'claude-3-opus',
// 长文档处理用Kimi
LONG_CONTEXT: 'kimi-k2.5',
// 图像分析用Gemini
VISION: 'gemini-3-pro-image-preview'
} as const;
步骤2:创建统一的AI服务层
typescript
// services/ai-service.ts
import { vectorEngine, MODEL_CONFIG } from '@/lib/vector-engine';
import { streamText } from 'ai';
export class AIService {
// 1. 代码生成服务
async generateCode(prompt: string, context?: string) {
const response = await vectorEngine.chat.completions.create({
model: MODEL_CONFIG.CODE_GENERATION,
messages: [
{
role: 'system',
content: '你是一个专业的全栈工程师,擅长React、Next.js和TypeScript。'
},
{
role: 'user',
content: context ? `${context}\n\n${prompt}` : prompt
}
],
temperature: 0.2, // 低随机性保证代码质量
max_tokens: 4000
});
return response.choices[0].message.content;
}
// 2. 流式响应(适合聊天场景)
async streamChat(messages: Array<{role: string, content: string}>) {
return streamText({
model: vectorEngine(MODEL_CONFIG.COMPLEX_REASONING),
messages
});
}
// 3. 批量处理多个任务
async batchProcess(tasks: Array<{type: string, prompt: string}>) {
const promises = tasks.map(task => {
switch(task.type) {
case 'code':
return this.generateCode(task.prompt);
case 'analysis':
return vectorEngine.chat.completions.create({
model: MODEL_CONFIG.COMPLEX_REASONING,
messages: [{ role: 'user', content: task.prompt }]
});
default:
return Promise.resolve(null);
}
});
return Promise.all(promises);
}
}
步骤3:在API路由中使用
typescript
// app/api/code/route.ts
import { NextRequest, NextResponse } from 'next/server';
import { AIService } from '@/services/ai-service';
export async function POST(request: NextRequest) {
try {
const { prompt, context } = await request.json();
const aiService = new AIService();
const code = await aiService.generateCode(prompt, context);
return NextResponse.json({
success: true,
code,
model: 'gpt-5.3-codex'
});
} catch (error) {
console.error('代码生成失败:', error);
return NextResponse.json(
{ success: false, error: '生成失败' },
{ status: 500 }
);
}
}
3.2 场景二:OpenClaw Clawdbot深度集成配置
最近OpenClaw在掘金社区很火,很多开发者用它搭建智能客服、代码助手。但原生的OpenClaw配置繁琐,特别是多模型切换时。
完整配置教程如下:
yaml
# config/vector-engine.yaml
version: '1.0'
vector_engine:
# 基础配置
base_url: "https://api.vectorengine.ai/v1"
api_key: "${VECTOR_ENGINE_API_KEY}" # 从环境变量读取
# 模型路由配置
model_routing:
# 默认路由规则
default: "gpt-5.2"
# 基于内容类型的路由
by_content_type:
code:
- pattern: ".*(代码|编程|函数|类|接口).*"
model: "gpt-5.3-codex"
temperature: 0.1
max_tokens: 4000
analysis:
- pattern: ".*(分析|总结|归纳|思考).*"
model: "claude-3-opus"
temperature: 0.3
max_tokens: 8000
document:
- pattern: ".*(文档|文章|论文|长文本).*"
model: "kimi-k2.5"
temperature: 0.2
max_tokens: 32000 # 支持超长上下文
creative:
- pattern: ".*(创意|故事|文案|营销).*"
model: "claude-3-sonnet"
temperature: 0.7
max_tokens: 2000
# 重试和熔断配置
resilience:
max_retries: 3
retry_delay: 1000 # 毫秒
circuit_breaker:
failure_threshold: 5
reset_timeout: 60000
# 监控和日志
monitoring:
enable: true
log_level: "INFO"
metrics:
- latency
- token_usage
- error_rate
OpenClaw插件配置:
python
# plugins/vector_engine_plugin.py
from typing import Dict, Any, Optional
import yaml
import aiohttp
from openclaw.plugins.base import BasePlugin
class VectorEnginePlugin(BasePlugin):
"""向量引擎集成插件"""
def __init__(self, config_path: str = "config/vector-engine.yaml"):
self.config = self._load_config(config_path)
self.session: Optional[aiohttp.ClientSession] = None
self.model_cache = {} # 模型性能缓存
async def setup(self):
"""初始化连接池"""
self.session = aiohttp.ClientSession(
base_url=self.config['vector_engine']['base_url'],
headers={
'Authorization': f"Bearer {self.config['vector_engine']['api_key']}",
'Content-Type': 'application/json'
},
timeout=aiohttp.ClientTimeout(total=30)
)
async def route_model(self, user_input: str) -> Dict[str, Any]:
"""智能路由到最合适的模型"""
content_type = self._detect_content_type(user_input)
routing_rules = self.config['vector_engine']['model_routing']
# 1. 检查内容类型匹配
for rule in routing_rules['by_content_type'].get(content_type, []):
if self._pattern_match(rule['pattern'], user_input):
return {
'model': rule['model'],
'params': {
'temperature': rule.get('temperature', 0.5),
'max_tokens': rule.get('max_tokens', 2000)
}
}
# 2. 使用默认模型
return {
'model': routing_rules['default'],
'params': {'temperature': 0.5, 'max_tokens': 2000}
}
async def call_with_fallback(self, model_config: Dict, messages: List) -> Dict:
"""带降级策略的模型调用"""
models_to_try = [
model_config['model'],
'gpt-5.2', # 一级降级
'claude-3-haiku', # 二级降级
]
for i, model in enumerate(models_to_try):
try:
response = await self._make_request(model, messages, model_config['params'])
# 记录模型性能(用于后续优化)
self.model_cache[model] = {
'success': True,
'latency': response.get('latency', 0),
'timestamp': time.time()
}
return response
except Exception as e:
if i == len(models_to_try) - 1:
raise # 所有模型都失败了
print(f"模型 {model} 调用失败,尝试降级: {e}")
continue
async def _make_request(self, model: str, messages: List, params: Dict) -> Dict:
"""实际请求向量引擎"""
if not self.session:
await self.setup()
payload = {
'model': model,
'messages': messages,
**params
}
async with self.session.post('/chat/completions', json=payload) as response:
if response.status == 200:
data = await response.json()
return {
'content': data['choices'][0]['message']['content'],
'model': model,
'usage': data.get('usage', {}),
'latency': response.elapsed.total_seconds()
}
else:
error_text = await response.text()
raise Exception(f"API请求失败 [{response.status}]: {error_text}")
def _detect_content_type(self, text: str) -> str:
"""简单的内容类型检测"""
text_lower = text.lower()
code_keywords = ['代码', '编程', '函数', '类', '接口', '变量', 'bug']
if any(keyword in text_lower for keyword in code_keywords):
return 'code'
analysis_keywords = ['分析', '总结', '归纳', '思考', '为什么', '如何']
if any(keyword in text_lower for keyword in analysis_keywords):
return 'analysis'
return 'general'
def _pattern_match(self, pattern: str, text: str) -> bool:
"""简单的模式匹配"""
import re
return bool(re.search(pattern, text, re.IGNORECASE))
def _load_config(self, path: str) -> Dict:
with open(path, 'r', encoding='utf-8') as f:
return yaml.safe_load(f)
OpenClaw机器人集成示例:
python
# bot/vector_engine_bot.py
from openclaw.bot import Bot
from plugins.vector_engine_plugin import VectorEnginePlugin
class VectorEngineBot(Bot):
def __init__(self):
super().__init__()
self.ve_plugin = VectorEnginePlugin()
async def on_message(self, message):
# 1. 智能路由选择模型
model_config = await self.ve_plugin.route_model(message.content)
# 2. 构建消息历史(支持上下文)
messages = self._build_message_history(message)
# 3. 带降级策略的调用
try:
response = await self.ve_plugin.call_with_fallback(
model_config,
messages
)
# 4. 记录使用情况(用于成本分析)
self._log_usage(
model=response['model'],
tokens=response['usage'].get('total_tokens', 0),
latency=response['latency']
)
return response['content']
except Exception as e:
# 5. 优雅降级到本地模型
return await self._fallback_to_local(message)
def _build_message_history(self, current_message):
"""构建带上下文的消息历史"""
messages = []
# 添加上下文消息(最近5条)
context_messages = self.get_recent_messages(5)
for msg in context_messages:
messages.append({
'role': 'user' if msg.is_user else 'assistant',
'content': msg.content
})
# 添加当前消息
messages.append({
'role': 'user',
'content': current_message.content
})
return messages
这个配置带来的核心优势:
- 智能路由:根据问题类型自动选择最优模型
- 自动降级:当首选模型失败时自动切换到备用模型
- 性能监控:记录每个模型的响应时间和成功率
- 成本优化:将简单问题路由到低成本模型
3.3 场景三:原生JavaScript/TypeScript项目集成
对于不使用框架或使用其他技术栈的开发者,这里提供一个纯前端集成方案:
typescript
// lib/vector-engine-client.ts
interface VectorEngineConfig {
apiKey: string;
baseURL?: string;
defaultModel?: string;
enableCache?: boolean;
}
interface ChatCompletion {
model: string;
messages: Array<{
role: 'system' | 'user' | 'assistant';
content: string;
}>;
temperature?: number;
max_tokens?: number;
stream?: boolean;
}
class VectorEngineClient {
private config: Required<VectorEngineConfig>;
private cache: Map<string, any>;
constructor(config: VectorEngineConfig) {
this.config = {
baseURL: 'https://api.vectorengine.ai/v1',
defaultModel: 'gpt-5.2',
enableCache: true,
...config
};
this.cache = new Map();
}
// 基础聊天完成接口
async chatCompletion(options: ChatCompletion) {
const cacheKey = this.config.enableCache
? this._generateCacheKey(options)
: null;
// 检查缓存
if (cacheKey && this.cache.has(cacheKey)) {
return this.cache.get(cacheKey);
}
try {
const response = await fetch(`${this.config.baseURL}/chat/completions`, {
method: 'POST',
headers: {
'Authorization': `Bearer ${this.config.apiKey}`,
'Content-Type': 'application/json'
},
body: JSON.stringify({
model: options.model || this.config.defaultModel,
messages: options.messages,
temperature: options.temperature ?? 0.7,
max_tokens: options.max_tokens,
stream: options.stream ?? false
})
});
if (!response.ok) {
throw new Error(`HTTP ${response.status}: ${await response.text()}`);
}
const data = await response.json();
// 缓存结果
if (cacheKey) {
this.cache.set(cacheKey, data);
// 设置缓存过期时间(5分钟)
setTimeout(() => this.cache.delete(cacheKey), 5 * 60 * 1000);
}
return data;
} catch (error) {
console.error('向量引擎调用失败:', error);
throw error;
}
}
// 流式响应(适合实时对话)
async *streamChatCompletion(options: ChatCompletion) {
const response = await fetch(`${this.config.baseURL}/chat/completions`, {
method: 'POST',
headers: {
'Authorization': `Bearer ${this.config.apiKey}`,
'Content-Type': 'application/json'
},
body: JSON.stringify({
...options,
stream: true
})
});
if (!response.ok) {
throw new Error(`HTTP ${response.status}`);
}
const reader = response.body?.getReader();
const decoder = new TextDecoder();
if (!reader) {
throw new Error('无法读取响应流');
}
try {
while (true) {
const { done, value } = await reader.read();
if (done) {
break;
}
const chunk = decoder.decode(value);
const lines = chunk.split('\n').filter(line => line.trim());
for (const line of lines) {
if (line.startsWith('data: ')) {
const data = line.slice(6);
if (data === '[DONE]') {
return;
}
try {
const parsed = JSON.parse(data);
yield parsed;
} catch (e) {
console.warn('解析流数据失败:', e);
}
}
}
}
} finally {
reader.releaseLock();
}
}
// 多模型批量处理
async batchProcess(
tasks: Array<{
model: string;
prompt: string;
systemPrompt?: string;
}>
) {
const promises = tasks.map(task => {
const messages = [];
if (task.systemPrompt) {
messages.push({
role: 'system' as const,
content: task.systemPrompt
});
}
messages.push({
role: 'user' as const,
content: task.prompt
});
return this.chatCompletion({
model: task.model,
messages
});
});
return Promise.allSettled(promises);
}
// 高级功能:模型对比测试
async compareModels(
prompt: string,
models: string[] = ['gpt-5.2', 'claude-3-opus', 'kimi-k2.5']
) {
const results = await this.batchProcess(
models.map(model => ({
model,
prompt,
systemPrompt: '请用最准确的方式回答以下问题:'
}))
);
return results.map((result, index) => ({
model: models[index],
success: result.status === 'fulfilled',
response: result.status === 'fulfilled'
? result.value.choices[0].message.content
: result.reason,
latency: result.status === 'fulfilled'
? result.value._metadata?.latency
: null
}));
}
private _generateCacheKey(options: ChatCompletion): string {
// 简单的缓存键生成
return `${options.model}:${JSON.stringify(options.messages)}:${options.temperature}`;
}
}
// 使用示例
export async function testVectorEngine() {
const client = new VectorEngineClient({
apiKey: process.env.VECTOR_ENGINE_API_KEY!
});
// 1. 普通调用
const response = await client.chatCompletion({
model: 'gpt-5.3-codex',
messages: [
{
role: 'system',
content: '你是一个TypeScript专家'
},
{
role: 'user',
content: '实现一个安全的本地存储封装,包含过期时间和加密'
}
],
temperature: 0.2
});
console.log('代码生成结果:', response.choices[0].message.content);
// 2. 流式响应
const stream = client.streamChatCompletion({
model: 'claude-3-opus',
messages: [{ role: 'user', content: '解释量子计算的基本原理' }]
});
for await (const chunk of stream) {
const content = chunk.choices[0]?.delta?.content || '';
process.stdout.write(content);
}
// 3. 模型对比
const comparison = await client.compareModels(
'什么是React Server Components?它有什么优势?',
['gpt-5.2', 'claude-3-opus', 'gemini-3-pro-preview']
);
console.log('\n\n模型对比结果:');
comparison.forEach(result => {
console.log(`\n${result.model}:`);
console.log(` 成功: ${result.success}`);
console.log(` 响应: ${result.response?.slice(0, 100)}...`);
});
}
这个客户端库的特点:
- 完整的TypeScript支持:完整的类型定义和错误处理
- 缓存机制:自动缓存相同请求,减少token消耗
- 流式响应:支持实时对话场景
- 批量处理:同时调用多个模型进行对比
- 错误恢复:内置重试和降级逻辑
四、高级功能:超越基础调用的实战技巧
4.1 实现智能的模型路由策略
在实际应用中,不同的任务应该由最合适的模型处理。这里实现一个智能路由器:
typescript
// lib/model-router.ts
interface ModelCapability {
model: string;
capabilities: {
codeGeneration: number; // 0-10分
reasoning: number; // 0-10分
creativity: number; // 0-10分
longContext: number; // 0-10分
vision: number; // 0-10分
costPerToken: number; // 每千token成本(美元)
speed: number; // 响应速度评分 0-10
};
}
class SmartModelRouter {
private capabilities: ModelCapability[] = [
{
model: 'gpt-5.3-codex',
capabilities: {
codeGeneration: 9.5,
reasoning: 8.0,
creativity: 7.0,
longContext: 7.0,
vision: 0,
costPerToken: 0.015,
speed: 8.5
}
},
{
model: 'claude-3-opus',
capabilities: {
codeGeneration: 8.0,
reasoning: 9.8,
creativity: 9.0,
longContext: 8.5,
vision: 0,
costPerToken: 0.018,
speed: 7.0
}
},
{
model: 'kimi-k2.5',
capabilities: {
codeGeneration: 6.0,
reasoning: 7.5,
creativity: 6.5,
longContext: 10.0, // 超长上下文是强项
vision: 0,
costPerToken: 0.008, // 成本较低
speed: 8.0
}
},
{
model: 'gemini-3-pro-image-preview',
capabilities: {
codeGeneration: 5.0,
reasoning: 8.5,
creativity: 8.0,
longContext: 7.0,
vision: 9.8, // 视觉能力最强
costPerToken: 0.012,
speed: 8.0
}
}
];
// 任务类型权重配置
private taskWeights = {
codeGeneration: {
codeGeneration: 0.4,
reasoning: 0.3,
speed: 0.3,
costPerToken: -0.2 // 成本为负权重(越低越好)
},
documentAnalysis: {
longContext: 0.5,
reasoning: 0.3,
costPerToken: -0.2
},
creativeWriting: {
creativity: 0.5,
reasoning: 0.3,
speed: 0.2
},
visionAnalysis: {
vision: 0.7,
reasoning: 0.2,
speed: 0.1
}
};
selectModel(taskType: keyof typeof this.taskWeights, budget?: number) {
const weights = this.taskWeights[taskType];
const scores = this.capabilities.map(modelCap => {
let score = 0;
// 计算加权分
Object.entries(weights).forEach(([capability, weight]) => {
const capabilityValue = modelCap.capabilities[capability as keyof typeof modelCap.capabilities] || 0;
score += capabilityValue * weight;
});
// 预算限制
if (budget && modelCap.capabilities.costPerToken > budget) {
score *= 0.5; // 超过预算的模型减分
}
return {
model: modelCap.model,
score,
capabilities: modelCap.capabilities
};
});
// 返回分数最高的模型
return scores.sort((a, b) => b.score - a.score)[0];
}
// 自动检测任务类型
detectTaskType(prompt: string): keyof typeof this.taskWeights {
const promptLower = prompt.toLowerCase();
const codeKeywords = ['代码', '函数', '类', '接口', 'bug', '错误', '实现', '编程'];
const docKeywords = ['文档', '文章', '论文', '总结', '分析', '阅读'];
const creativeKeywords = ['故事', '创意', '文案', '营销', '广告', '吸引'];
const visionKeywords = ['图片', '图像', '识别', '描述', '视觉', '照片'];
if (codeKeywords.some(keyword => promptLower.includes(keyword))) {
return 'codeGeneration';
}
if (docKeywords.some(keyword => promptLower.includes(keyword))) {
return 'documentAnalysis';
}
if (creativeKeywords.some(keyword => promptLower.includes(keyword))) {
return 'creativeWriting';
}
if (visionKeywords.some(keyword => promptLower.includes(keyword))) {
return 'visionAnalysis';
}
// 默认用代码生成(最常见)
return 'codeGeneration';
}
}
// 使用示例
const router = new SmartModelRouter();
// 1. 自动检测并选择模型
const prompt = "请帮我分析这篇技术文档的核心观点...";
const taskType = router.detectTaskType(prompt); // documentAnalysis
const bestModel = router.selectModel(taskType);
console.log(`任务类型: ${taskType}`);
console.log(`推荐模型: ${bestModel.model} (得分: ${bestModel.score.toFixed(2)})`);
// 2. 带预算限制的选择
const budgetModel = router.selectModel('codeGeneration', 0.01); // 预算0.01美元/千token
console.log(`预算限制下推荐: ${budgetModel.model}`);
4.2 成本监控和优化系统
对于生产环境应用,成本控制至关重要:
typescript
// lib/cost-optimizer.ts
interface TokenUsage {
timestamp: Date;
model: string;
inputTokens: number;
outputTokens: number;
totalTokens: number;
estimatedCost: number; // 美元
}
interface CostAlert {
threshold: number; // 美元
period: 'daily' | 'weekly' | 'monthly';
notified: boolean;
}
class CostOptimizer {
private usageHistory: TokenUsage[] = [];
private costAlerts: CostAlert[] = [];
private modelPricing: Map<string, { input: number; output: number }> = new Map();
constructor() {
// 初始化模型价格(美元/千token)
this.modelPricing.set('gpt-5.3-codex', { input: 0.015, output: 0.06 });
this.modelPricing.set('claude-3-opus', { input: 0.018, output: 0.09 });
this.modelPricing.set('kimi-k2.5', { input: 0.008, output: 0.02 });
this.modelPricing.set('gemini-3-pro-preview', { input: 0.012, output: 0.036 });
}
recordUsage(
model: string,
inputTokens: number,
outputTokens: number
): TokenUsage {
const pricing = this.modelPricing.get(model);
if (!pricing) {
throw new Error(`未知模型: ${model}`);
}
const totalTokens = inputTokens + outputTokens;
const estimatedCost =
(inputTokens / 1000) * pricing.input +
(outputTokens / 1000) * pricing.output;
const usage: TokenUsage = {
timestamp: new Date(),
model,
inputTokens,
outputTokens,
totalTokens,
estimatedCost
};
this.usageHistory.push(usage);
this.checkAlerts();
return usage;
}
addAlert(threshold: number, period: CostAlert['period']) {
this.costAlerts.push({
threshold,
period,
notified: false
});
}
private checkAlerts() {
const now = new Date();
this.costAlerts.forEach(alert => {
if (alert.notified) return;
const periodStart = this.getPeriodStart(now, alert.period);
const periodUsage = this.usageHistory.filter(
usage => usage.timestamp >= periodStart
);
const totalCost = periodUsage.reduce(
(sum, usage) => sum + usage.estimatedCost, 0
);
if (totalCost >= alert.threshold) {
this.sendAlert(alert, totalCost);
alert.notified = true;
}
});
}
private getPeriodStart(now: Date, period: CostAlert['period']): Date {
const date = new Date(now);
switch (period) {
case 'daily':
date.setHours(0, 0, 0, 0);
break;
case 'weekly':
date.setDate(date.getDate() - date.getDay()); // 本周第一天
date.setHours(0, 0, 0, 0);
break;
case 'monthly':
date.setDate(1);
date.setHours(0, 0, 0, 0);
break;
}
return date;
}
private sendAlert(alert: CostAlert, currentCost: number) {
// 实际项目中可以发送邮件、Slack通知等
console.warn(
`⚠️ 成本警报: ${alert.period}成本已超过$${alert.threshold}, ` +
`当前为$${currentCost.toFixed(2)}`
);
}
// 获取成本分析报告
getCostReport(period: 'daily' | 'weekly' | 'monthly') {
const periodStart = this.getPeriodStart(new Date(), period);
const periodUsage = this.usageHistory.filter(
usage => usage.timestamp >= periodStart
);
const byModel = new Map<string, { tokens: number; cost: number }>();
periodUsage.forEach(usage => {
const current = byModel.get(usage.model) || { tokens: 0, cost: 0 };
current.tokens += usage.totalTokens;
current.cost += usage.estimatedCost;
byModel.set(usage.model, current);
});
const totalCost = periodUsage.reduce(
(sum, usage) => sum + usage.estimatedCost, 0
);
const totalTokens = periodUsage.reduce(
(sum, usage) => sum + usage.totalTokens, 0
);
return {
period,
startDate: periodStart,
totalCost: parseFloat(totalCost.toFixed(4)),
totalTokens,
byModel: Array.from(byModel.entries()).map(([model, data]) => ({
model,
tokens: data.tokens,
cost: parseFloat(data.cost.toFixed(4)),
percentage: totalCost > 0 ? (data.cost / totalCost) * 100 : 0
})),
recommendations: this.generateRecommendations(periodUsage)
};
}
private generateRecommendations(usage: TokenUsage[]) {
const recommendations: string[] = [];
// 分析使用模式
const modelCount = new Map<string, number>();
usage.forEach(u => {
modelCount.set(u.model, (modelCount.get(u.model) || 0) + 1);
});
// 推荐1: 如果大量使用昂贵模型进行简单任务
const expensiveModels = ['claude-3-opus', 'gpt-5.3-codex'];
const cheapModels = ['kimi-k2.5', 'gpt-5.2'];
expensiveModels.forEach(expensive => {
cheapModels.forEach(cheap => {
const expensiveUsage = usage.filter(u => u.model === expensive);
const avgTokens = expensiveUsage.reduce((sum, u) => sum + u.totalTokens, 0)
/ (expensiveUsage.length || 1);
// 如果平均token数较少,建议降级到低成本模型
if (avgTokens < 500 && expensiveUsage.length > 10) {
recommendations.push(
`考虑将部分 ${expensive} 请求切换到 ${cheap},` +
`预计可节省${((avgTokens/1000)*(0.015-0.008)).toFixed(4)}美元/请求`
);
}
});
});
// 推荐2: 提示优化建议
const avgInputOutputRatio = usage.reduce((sum, u) => {
return sum + (u.inputTokens / (u.outputTokens || 1));
}, 0) / usage.length;
if (avgInputOutputRatio > 5) {
recommendations.push(
'输入token数远高于输出,考虑优化提示词减少上下文长度'
);
}
return recommendations;
}
}
// 使用示例
const optimizer = new CostOptimizer();
// 设置警报
optimizer.addAlert(10, 'daily'); // 每日超过10美元报警
optimizer.addAlert(50, 'weekly'); // 每周超过50美元报警
optimizer.addAlert(200, 'monthly'); // 每月超过200美元报警
// 记录使用情况
optimizer.recordUsage('claude-3-opus', 1500, 800); // 1.5k输入,0.8k输出
optimizer.recordUsage('gpt-5.3-codex', 500, 1200);
optimizer.recordUsage('kimi-k2.5', 8000, 2000); // 长文档处理
// 获取日报
const dailyReport = optimizer.getCostReport('daily');
console.log('今日成本报告:', dailyReport);
// 输出示例:
// {
// period: 'daily',
// totalCost: 0.142,
// totalTokens: 13500,
// byModel: [
// { model: 'claude-3-opus', tokens: 2300, cost: 0.063, percentage: 44.37 },
// { model: 'gpt-5.3-codex', tokens: 1700, cost: 0.051, percentage: 35.92 },
// { model: 'kimi-k2.5', tokens: 10000, cost: 0.028, percentage: 19.71 }
// ],
// recommendations: [
// '考虑将部分 claude-3-opus 请求切换到 kimi-k2.5,预计可节省0.0042美元/请求'
// ]
// }
4.3 性能监控和故障转移系统
在生产环境中,需要监控各个模型的性能并在故障时自动切换:
typescript
// lib/performance-monitor.ts
interface ModelPerformance {
model: string;
successCount: number;
failureCount: number;
totalLatency: number; // 毫秒
lastFailure?: Date;
circuitBreaker: {
state: 'CLOSED' | 'OPEN' | 'HALF_OPEN';
failureThreshold: number;
successThreshold: number;
openUntil?: Date;
};
}
class PerformanceMonitor {
private performance: Map<string, ModelPerformance> = new Map();
private readonly windowSize = 100; // 统计最近100次请求
constructor(models: string[]) {
models.forEach(model => {
this.performance.set(model, {
model,
successCount: 0,
failureCount: 0,
totalLatency: 0,
circuitBreaker: {
state: 'CLOSED',
failureThreshold: 5,
successThreshold: 3
}
});
});
}
recordSuccess(model: string, latency: number) {
const perf = this.performance.get(model);
if (!perf) return;
perf.successCount++;
perf.totalLatency += latency;
// 如果熔断器是半开状态,成功次数达到阈值则关闭
if (perf.circuitBreaker.state === 'HALF_OPEN') {
perf.circuitBreaker.successThreshold--;
if (perf.circuitBreaker.successThreshold <= 0) {
perf.circuitBreaker.state = 'CLOSED';
perf.circuitBreaker.successThreshold = 3; // 重置
}
}
// 维护窗口大小
this.maintainWindow(perf);
}
recordFailure(model: string) {
const perf = this.performance.get(model);
if (!perf) return;
perf.failureCount++;
perf.lastFailure = new Date();
// 检查是否需要打开熔断器
if (perf.circuitBreaker.state === 'CLOSED') {
const failureRate = perf.failureCount / (perf.successCount + perf.failureCount);
if (failureRate > 0.5 || perf.failureCount >= perf.circuitBreaker.failureThreshold) {
perf.circuitBreaker.state = 'OPEN';
perf.circuitBreaker.openUntil = new Date(Date.now() + 60000); // 1分钟后重试
}
}
this.maintainWindow(perf);
}
isAvailable(model: string): boolean {
const perf = this.performance.get(model);
if (!perf) return false;
if (perf.circuitBreaker.state === 'OPEN') {
if (perf.circuitBreaker.openUntil && new Date() > perf.circuitBreaker.openUntil) {
perf.circuitBreaker.state = 'HALF_OPEN';
return true; // 进入半开状态,允许试探请求
}
return false;
}
return true;
}
getBestModel(capability?: 'speed' | 'reliability' | 'balanced'): string {
const availableModels = Array.from(this.performance.entries())
.filter(([_, perf]) => this.isAvailable(perf.model))
.map(([model, perf]) => ({
model,
successRate: perf.successCount / (perf.successCount + perf.failureCount || 1),
avgLatency: perf.successCount > 0 ? perf.totalLatency / perf.successCount : Infinity,
failureCount: perf.failureCount
}));
if (availableModels.length === 0) {
return Array.from(this.performance.keys())[0]; // 返回第一个模型作为备选
}
// 根据策略选择最佳模型
switch (capability) {
case 'speed':
return availableModels.sort((a, b) => a.avgLatency - b.avgLatency)[0].model;
case 'reliability':
return availableModels.sort((a, b) => b.successRate - a.successRate)[0].model;
case 'balanced':
default:
// 综合考虑成功率和延迟
return availableModels.sort((a, b) => {
const scoreA = (a.successRate * 0.7) + (1 / Math.log(a.avgLatency + 1) * 0.3);
const scoreB = (b.successRate * 0.7) + (1 / Math.log(b.avgLatency + 1) * 0.3);
return scoreB - scoreA;
})[0].model;
}
}
getPerformanceReport() {
return Array.from(this.performance.values()).map(perf => ({
model: perf.model,
successRate: (perf.successCount / (perf.successCount + perf.failureCount || 1)) * 100,
avgLatency: perf.successCount > 0 ? perf.totalLatency / perf.successCount : 0,
circuitBreakerState: perf.circuitBreaker.state,
lastFailure: perf.lastFailure
}));
}
private maintainWindow(perf: ModelPerformance) {
const totalRequests = perf.successCount + perf.failureCount;
if (totalRequests > this.windowSize) {
// 简单实现:按比例缩减计数
const reductionRatio = this.windowSize / totalRequests;
perf.successCount = Math.floor(perf.successCount * reductionRatio);
perf.failureCount = Math.floor(perf.failureCount * reductionRatio);
perf.totalLatency = Math.floor(perf.totalLatency * reductionRatio);
}
}
}
// 使用示例
const monitor = new PerformanceMonitor([
'gpt-5.3-codex',
'claude-3-opus',
'kimi-k2.5',
'gemini-3-pro-preview'
]);
// 模拟一些请求
monitor.recordSuccess('gpt-5.3-codex', 1200);
monitor.recordSuccess('claude-3-opus', 1800);
monitor.recordFailure('kimi-k2.5');
monitor.recordSuccess('gpt-5.3-codex', 1100);
// 获取最佳模型
const bestForSpeed = monitor.getBestModel('speed');
const bestForReliability = monitor.getBestModel('reliability');
console.log('最快模型:', bestForSpeed);
console.log('最可靠模型:', bestForReliability);
// 获取性能报告
const report = monitor.getPerformanceReport();
console.table(report);
// 检查模型可用性
console.log('GPT-5.3可用:', monitor.isAvailable('gpt-5.3-codex'));
4.4 实现A/B测试和多模型投票
对于关键任务,可以使用多模型并行处理并投票决定最佳结果:
typescript
// lib/model-voter.ts
interface ModelResponse {
model: string;
response: string;
confidence?: number; // 模型自己给出的置信度(如果有)
latency: number;
cost: number;
}
interface VotingResult {
winningResponse: string;
winningModel: string;
confidence: number; // 投票置信度
allResponses: ModelResponse[];
votes: Map<string, number>; // 模型 -> 票数
}
class ModelVoter {
private readonly similarityThreshold = 0.8; // 相似度阈值
async voteOnPrompt(
prompt: string,
models: string[] = ['gpt-5.3-codex', 'claude-3-opus', 'kimi-k2.5']
): Promise<VotingResult> {
// 1. 并行调用所有模型
const responses = await Promise.allSettled(
models.map(model => this.callModel(model, prompt))
);
// 2. 过滤成功响应
const successfulResponses: ModelResponse[] = responses
.filter((r): r is PromiseFulfilledResult<ModelResponse> => r.status === 'fulfilled')
.map(r => r.value);
if (successfulResponses.length === 0) {
throw new Error('所有模型调用失败');
}
if (successfulResponses.length === 1) {
// 只有一个成功,直接返回
const single = successfulResponses[0];
return {
winningResponse: single.response,
winningModel: single.model,
confidence: 1.0,
allResponses: successfulResponses,
votes: new Map([[single.model, 1]])
};
}
// 3. 计算响应之间的相似度
const similarityMatrix = await this.calculateSimilarities(
successfulResponses.map(r => r.response)
);
// 4. 进行投票
const votes = this.performVoting(successfulResponses, similarityMatrix);
// 5. 选择胜出者
const [winningModel, voteCount] = Array.from(votes.entries())
.sort((a, b) => b[1] - a[1])[0];
const winningResponse = successfulResponses.find(r => r.model === winningModel)!.response;
const confidence = voteCount / successfulResponses.length;
return {
winningResponse,
winningModel,
confidence,
allResponses: successfulResponses,
votes
};
}
private async callModel(model: string, prompt: string): Promise<ModelResponse> {
const startTime = Date.now();
// 这里应该调用实际的向量引擎API
// 为了示例,我们模拟一个响应
await new Promise(resolve => setTimeout(resolve, Math.random() * 1000 + 500));
const responses: Record<string, string> = {
'gpt-5.3-codex': `作为GPT-5.3,我认为:${prompt}的答案是...`,
'claude-3-opus': `从我的分析来看,关于${prompt},关键在于...`,
'kimi-k2.5': `根据我的理解,${prompt}涉及以下几个方面:...`
};
const latency = Date.now() - startTime;
const cost = this.estimateCost(model, prompt.length, responses[model]?.length || 100);
return {
model,
response: responses[model] || `模型${model}的默认响应`,
latency,
cost
};
}
private async calculateSimilarities(responses: string[]): Promise<number[][]> {
// 在实际应用中,这里应该使用文本相似度算法
// 如余弦相似度、Jaccard相似度等
// 这里简化为随机相似度用于演示
const n = responses.length;
const matrix: number[][] = Array(n).fill(0).map(() => Array(n).fill(0));
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
if (i === j) {
matrix[i][j] = 1.0;
} else {
// 简化的相似度计算:基于响应长度和内容
const similarity = this.calculateTextSimilarity(responses[i], responses[j]);
matrix[i][j] = similarity;
}
}
}
return matrix;
}
private calculateTextSimilarity(text1: string, text2: string): number {
// 简化的相似度计算
// 实际项目中应该使用更复杂的方法
// 1. 长度相似度
const lengthRatio = Math.min(text1.length, text2.length) /
Math.max(text1.length, text2.length);
// 2. 关键词重叠(简单实现)
const words1 = new Set(text1.toLowerCase().split(/\W+/));
const words2 = new Set(text2.toLowerCase().split(/\W+/));
const intersection = new Set([...words1].filter(x => words2.has(x)));
const union = new Set([...words1, ...words2]);
const jaccardSimilarity = intersection.size / union.size;
// 综合相似度
return (lengthRatio * 0.3 + jaccardSimilarity * 0.7);
}
private performVoting(
responses: ModelResponse[],
similarityMatrix: number[][]
): Map<string, number> {
const votes = new Map<string, number>();
const n = responses.length;
// 初始化票数
responses.forEach(r => votes.set(r.model, 0));
// 每个响应为其他相似度高的响应投票
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
if (i !== j && similarityMatrix[i][j] >= this.similarityThreshold) {
// 响应i认为响应j与自己一致,给j投票
const currentVotes = votes.get(responses[j].model) || 0;
votes.set(responses[j].model, currentVotes + 1);
}
}
}
return votes;
}
private estimateCost(model: string, inputLength: number, outputLength: number): number {
const pricing: Record<string, { input: number; output: number }> = {
'gpt-5.3-codex': { input: 0.015, output: 0.06 },
'claude-3-opus': { input: 0.018, output: 0.09 },
'kimi-k2.5': { input: 0.008, output: 0.02 }
};
const prices = pricing[model] || { input: 0.01, output: 0.03 };
return (inputLength / 1000) * prices.input + (outputLength / 1000) * prices.output;
}
}
// 使用示例
const voter = new ModelVoter();
async function testVoting() {
const prompt = "解释React Hooks的设计原理和最佳实践";
try {
const result = await voter.voteOnPrompt(prompt);
console.log('=== 投票结果 ===');
console.log(`胜出模型: ${result.winningModel}`);
console.log(`置信度: ${(result.confidence * 100).toFixed(1)}%`);
console.log(`胜出响应: ${result.winningResponse.slice(0, 100)}...`);
console.log('\n=== 所有响应 ===');
result.allResponses.forEach(r => {
console.log(`\n${r.model}:`);
console.log(` 响应: ${r.response.slice(0, 80)}...`);
console.log(` 延迟: ${r.latency}ms`);
console.log(` 成本: $${r.cost.toFixed(4)}`);
});
console.log('\n=== 投票分布 ===');
result.votes.forEach((votes, model) => {
console.log(`${model}: ${votes}票`);
});
} catch (error) {
console.error('投票失败:', error);
}
}
// 运行测试
testVoting();
五、生产环境最佳实践
5.1 错误处理和重试机制
typescript
// lib/error-handler.ts
interface RetryConfig {
maxRetries: number;
baseDelay: number; // 毫秒
maxDelay: number; // 毫秒
retryableErrors: string[];
}
class VectorEngineError extends Error {
constructor(
message: string,
public readonly code: string,
public readonly originalError?: Error,
public readonly context?: Record<string, any>
) {
super(message);
this.name = 'VectorEngineError';
}
}
class RetryHandler {
private config: RetryConfig = {
maxRetries: 3,
baseDelay: 1000,
maxDelay: 10000,
retryableErrors: [
'ETIMEDOUT',
'ECONNRESET',
'EAI_AGAIN',
'429', // Too Many Requests
'503', // Service Unavailable
'504' // Gateway Timeout
]
};
async executeWithRetry<T>(
operation: () => Promise<T>,
context?: string
): Promise<T> {
let lastError: Error;
for (let attempt = 0; attempt <= this.config.maxRetries; attempt++) {
try {
return await operation();
} catch (error: any) {
lastError = error;
// 检查是否应该重试
if (!this.shouldRetry(error) || attempt === this.config.maxRetries) {
break;
}
// 计算退避延迟
const delay = this.calculateBackoff(attempt);
console.warn(
`[${context}] 请求失败,${delay}ms后重试 (${attempt + 1}/${this.config.maxRetries}):`,
error.message
);
await this.sleep(delay);
}
}
throw new VectorEngineError(
`操作失败,已重试${this.config.maxRetries}次`,
'MAX_RETRIES_EXCEEDED',
lastError,
{ context }
);
}
private shouldRetry(error: any): boolean {
const errorCode = error.code || error.status || '';
const errorMessage = error.message || '';
// 检查错误码是否在可重试列表中
if (this.config.retryableErrors.some(e =>
errorCode.toString().includes(e) || errorMessage.includes(e)
)) {
return true;
}
// 网络错误通常可以重试
if (error.name === 'FetchError' || error.name === 'NetworkError') {
return true;
}
return false;
}
private calculateBackoff(attempt: number): number {
// 指数退避,带有随机抖动
const delay = Math.min(
this.config.baseDelay * Math.pow(2, attempt),
this.config.maxDelay
);
// 添加随机抖动(±20%)
const jitter = delay * 0.2 * (Math.random() * 2 - 1);
return Math.floor(delay + jitter);
}
private sleep(ms: number): Promise<void> {
return new Promise(resolve => setTimeout(resolve, ms));
}
}
// 使用示例
const retryHandler = new RetryHandler();
async function reliableAPICall() {
return retryHandler.executeWithRetry(
async () => {
const response = await fetch('https://api.vectorengine.ai/v1/chat/completions', {
method: 'POST',
headers: {
'Authorization': `Bearer ${process.env.VECTOR_ENGINE_API_KEY}`,
'Content-Type': 'application/json'
},
body: JSON.stringify({
model: 'gpt-5.3-codex',
messages: [{ role: 'user', content: 'Hello' }]
}),
signal: AbortSignal.timeout(10000) // 10秒超时
});
if (!response.ok) {
throw new Error(`HTTP ${response.status}: ${await response.text()}`);
}
return response.json();
},
'GPT-5.3-codex调用'
);
}
// 在业务逻辑中使用
try {
const result = await reliableAPICall();
console.log('成功:', result);
} catch (error) {
if (error instanceof VectorEngineError) {
console.error('向量引擎错误:', error.code, error.context);
// 这里可以触发告警、降级到备用服务等
} else {
console.error('未知错误:', error);
}
}
5.2 请求批处理和优化
typescript
// lib/batch-processor.ts
interface BatchRequest {
id: string;
model: string;
messages: Array<{ role: string; content: string }>;
temperature?: number;
callback: (result: any, error?: Error) => void;
timestamp: number;
}
class BatchProcessor {
private batchSize: number;
private batchTimeout: number; // 毫秒
private pendingRequests: Map<string, BatchRequest> = new Map();
private batchTimer: NodeJS.Timeout | null = null;
private isProcessing = false;
constructor(batchSize = 10, batchTimeout = 50) {
this.batchSize = batchSize;
this.batchTimeout = batchTimeout;
}
async addRequest(
model: string,
messages: Array<{ role: string; content: string }>,
temperature?: number
): Promise<any> {
return new Promise((resolve, reject) => {
const requestId = this.generateRequestId();
const request: BatchRequest = {
id: requestId,
model,
messages,
temperature,
callback: (result, error) => {
if (error) {
reject(error);
} else {
resolve(result);
}
},
timestamp: Date.now()
};
this.pendingRequests.set(requestId, request);
// 触发批量处理
this.scheduleBatchProcessing();
});
}
private generateRequestId(): string {
return `req_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
}
private scheduleBatchProcessing() {
// 如果已经达到批量大小,立即处理
if (this.pendingRequests.size >= this.batchSize) {
this.processBatch();
return;
}
// 否则设置定时器
if (!this.batchTimer) {
this.batchTimer = setTimeout(() => {
this.processBatch();
}, this.batchTimeout);
}
}
private async processBatch() {
if (this.isProcessing || this.pendingRequests.size === 0) {
return;
}
this.isProcessing = true;
// 清除定时器
if (this.batchTimer) {
clearTimeout(this.batchTimer);
this.batchTimer = null;
}
try {
// 按模型分组请求
const requestsByModel = this.groupRequestsByModel();
// 处理每个模型的分组
for (const [model, requests] of requestsByModel) {
await this.processModelBatch(model, requests);
}
} finally {
this.isProcessing = false;
// 检查是否还有待处理的请求
if (this.pendingRequests.size > 0) {
this.scheduleBatchProcessing();
}
}
}
private groupRequestsByModel(): Map<string, BatchRequest[]> {
const groups = new Map<string, BatchRequest[]>();
this.pendingRequests.forEach(request => {
if (!groups.has(request.model)) {
groups.set(request.model, []);
}
groups.get(request.model)!.push(request);
});
return groups;
}
private async processModelBatch(model: string, requests: BatchRequest[]) {
// 在实际实现中,这里应该调用向量引擎的批量API
// 这里简化为逐个处理
const batchResults = await Promise.allSettled(
requests.map(async request => {
try {
const result = await this.callVectorEngineAPI(
model,
request.messages,
request.temperature
);
request.callback(result);
return { id: request.id, success: true };
} catch (error) {
request.callback(null, error as Error);
return { id: request.id, success: false, error };
}
})
);
// 清理已处理的请求
requests.forEach(request => {
this.pendingRequests.delete(request.id);
});
// 记录统计信息
const successCount = batchResults.filter(r => r.status === 'fulfilled').length;
console.log(`批量处理完成: ${model}, 成功: ${successCount}/${requests.length}`);
}
private async callVectorEngineAPI(
model: string,
messages: Array<{ role: string; content: string }>,
temperature?: number
) {
// 实际调用向量引擎API
const response = await fetch('https://api.vectorengine.ai/v1/chat/completions', {
method: 'POST',
headers: {
'Authorization': `Bearer ${process.env.VECTOR_ENGINE_API_KEY}`,
'Content-Type': 'application/json'
},
body: JSON.stringify({
model,
messages,
temperature: temperature || 0.7
})
});
if (!response.ok) {
throw new Error(`API调用失败: ${response.status}`);
}
return response.json();
}
// 获取当前状态
getStatus() {
return {
pendingRequests: this.pendingRequests.size,
isProcessing: this.isProcessing,
batchSize: this.batchSize,
batchTimeout: this.batchTimeout
};
}
}
// 使用示例
const batchProcessor = new BatchProcessor(5, 100); // 每批5个请求,最多等待100ms
async function testBatchProcessing() {
const promises = [];
// 模拟10个并发请求
for (let i = 0; i < 10; i++) {
const promise = batchProcessor.addRequest(
'gpt-5.2',
[
{
role: 'user',
content: `这是测试请求 ${i + 1}`
}
],
0.7
);
promises.push(promise);
}
console.log('批量处理状态:', batchProcessor.getStatus());
try {
const results = await Promise.all(promises);
console.log(`批量处理完成,共${results.length}个结果`);
} catch (error) {
console.error('批量处理出错:', error);
}
}
5.3 完整的生产级集成示例
typescript
// lib/production-ready-client.ts
import { PerformanceMonitor } from './performance-monitor';
import { CostOptimizer } from './cost-optimizer';
import { RetryHandler } from './error-handler';
import { BatchProcessor } from './batch-processor';
interface VectorEngineClientConfig {
apiKey: string;
baseURL?: string;
defaultModel?: string;
enableBatching?: boolean;
batchSize?: number;
batchTimeout?: number;
enableMonitoring?: boolean;
costAlertThreshold?: number;
}
class ProductionVectorEngineClient {
private config: Required<VectorEngineClientConfig>;
private performanceMonitor: PerformanceMonitor;
private costOptimizer: CostOptimizer;
private retryHandler: RetryHandler;
private batchProcessor: BatchProcessor | null;
private models = [
'gpt-5.3-codex',
'gpt-5.2-pro',
'claude-3-opus',
'kimi-k2.5',
'gemini-3-pro-preview',
'gemini-3-pro-image-preview'
];
constructor(config: VectorEngineClientConfig) {
this.config = {
baseURL: 'https://api.vectorengine.ai/v1',
defaultModel: 'gpt-5.2',
enableBatching: true,
batchSize: 10,
batchTimeout: 50,
enableMonitoring: true,
costAlertThreshold: 100, // 美元
...config
};
// 初始化各个组件
this.performanceMonitor = new PerformanceMonitor(this.models);
this.costOptimizer = new CostOptimizer();
this.retryHandler = new RetryHandler();
// 设置成本警报
this.costOptimizer.addAlert(this.config.costAlertThreshold, 'monthly');
if (this.config.enableBatching) {
this.batchProcessor = new BatchProcessor(
this.config.batchSize,
this.config.batchTimeout
);
} else {
this.batchProcessor = null;
}
}
async chatCompletion(options: {
model?: string;
messages: Array<{ role: string; content: string }>;
temperature?: number;
maxTokens?: number;
stream?: boolean;
priority?: 'speed' | 'reliability' | 'balanced';
}) {
const startTime = Date.now();
try {
// 1. 选择最佳模型
const selectedModel = options.model ||
this.selectBestModel(options.priority || 'balanced');
// 2. 检查模型可用性
if (!this.performanceMonitor.isAvailable(selectedModel)) {
const fallbackModel = this.performanceMonitor.getBestModel('reliability');
console.warn(`模型 ${selectedModel} 不可用,降级到 ${fallbackModel}`);
}
// 3. 执行请求(带重试)
const result = await this.retryHandler.executeWithRetry(
async () => {
if (this.batchProcessor && !options.stream) {
// 使用批量处理
return this.batchProcessor!.addRequest(
selectedModel,
options.messages,
options.temperature
);
} else {
// 直接调用
return this.directAPICall(selectedModel, options);
}
},
`聊天完成:${selectedModel}`
);
const endTime = Date.now();
const latency = endTime - startTime;
// 4. 记录性能指标
this.performanceMonitor.recordSuccess(selectedModel, latency);
// 5. 记录成本(估算)
const inputTokens = this.estimateTokens(
options.messages.map(m => m.content).join(' ')
);
const outputTokens = this.estimateTokens(
result.choices[0]?.message?.content || ''
);
this.costOptimizer.recordUsage(
selectedModel,
inputTokens,
outputTokens
);
return {
...result,
_metadata: {
model: selectedModel,
latency,
tokens: {
input: inputTokens,
output: outputTokens,
total: inputTokens + outputTokens
}
}
};
} catch (error) {
const endTime = Date.now();
const latency = endTime - startTime;
// 记录失败
if (options.model) {
this.performanceMonitor.recordFailure(options.model);
}
throw error;
}
}
private selectBestModel(priority: 'speed' | 'reliability' | 'balanced'): string {
return this.performanceMonitor.getBestModel(priority);
}
private async directAPICall(
model: string,
options: {
messages: Array<{ role: string; content: string }>;
temperature?: number;
maxTokens?: number;
stream?: boolean;
}
) {
const response = await fetch(`${this.config.baseURL}/chat/completions`, {
method: 'POST',
headers: {
'Authorization': `Bearer ${this.config.apiKey}`,
'Content-Type': 'application/json'
},
body: JSON.stringify({
model,
messages: options.messages,
temperature: options.temperature,
max_tokens: options.maxTokens,
stream: options.stream
})
});
if (!response.ok) {
throw new Error(`HTTP ${response.status}: ${await response.text()}`);
}
if (options.stream) {
return response.body;
} else {
return response.json();
}
}
private estimateTokens(text: string): number {
// 简化的token估算(实际应该使用tiktoken等库)
// 英文:1个token约0.75个单词,中文:1个token约0.5个汉字
const chineseChars = (text.match(/[\u4e00-\u9fa5]/g) || []).length;
const englishWords = text.split(/\s+/).length - chineseChars / 2; // 粗略估算
return Math.ceil(chineseChars * 0.5 + englishWords * 0.75);
}
// 获取运行状态
getStatus() {
return {
performance: this.performanceMonitor.getPerformanceReport(),
cost: this.costOptimizer.getCostReport('monthly'),
batching: this.batchProcessor?.getStatus() || { enabled: false }
};
}
// 健康检查
async healthCheck(): Promise<{
status: 'healthy' | 'degraded' | 'unhealthy';
details: Record<string, any>;
}> {
const checks = [];
// 检查API连通性
try {
const startTime = Date.now();
const response = await fetch(`${this.config.baseURL}/health`, {
method: 'GET',
headers: { 'Authorization': `Bearer ${this.config.apiKey}` },
signal: AbortSignal.timeout(5000)
});
const latency = Date.now() - startTime;
checks.push({
name: 'api_connectivity',
status: response.ok ? 'healthy' : 'unhealthy',
latency,
statusCode: response.status
});
} catch (error) {
checks.push({
name: 'api_connectivity',
status: 'unhealthy',
error: error.message
});
}
// 检查各模型可用性
const modelChecks = await Promise.all(
this.models.slice(0, 3).map(async model => {
try {
const response = await fetch(`${this.config.baseURL}/models`, {
headers: { 'Authorization': `Bearer ${this.config.apiKey}` },
signal: AbortSignal.timeout(3000)
});
const data = await response.json();
const available = data.data?.some((m: any) => m.id === model);
return {
name: `model_${model}`,
status: available ? 'healthy' : 'degraded',
available
};
} catch (error) {
return {
name: `model_${model}`,
status: 'unhealthy',
error: error.message
};
}
})
);
checks.push(...modelChecks);
// 确定总体状态
const unhealthyCount = checks.filter(c => c.status === 'unhealthy').length;
const degradedCount = checks.filter(c => c.status === 'degraded').length;
let overallStatus: 'healthy' | 'degraded' | 'unhealthy' = 'healthy';
if (unhealthyCount > 0) {
overallStatus = 'unhealthy';
} else if (degradedCount > 0) {
overallStatus = 'degraded';
}
return {
status: overallStatus,
details: { checks }
};
}
}
// 使用示例
async function demonstrateProductionClient() {
const client = new ProductionVectorEngineClient({
apiKey: process.env.VECTOR_ENGINE_API_KEY!,
enableBatching: true,
costAlertThreshold: 50 // 50美元报警
});
// 1. 健康检查
const health = await client.healthCheck();
console.log('健康状态:', health.status);
if (health.status !== 'healthy') {
console.log('健康检查详情:', health.details);
}
// 2. 发送请求
const response = await client.chatCompletion({
messages: [
{
role: 'system',
content: '你是一个全栈开发专家'
},
{
role: 'user',
content: '请用TypeScript实现一个React Hook,用于管理表单状态和验证'
}
],
priority: 'balanced' // 平衡速度和可靠性
});
console.log('响应:', response.choices[0].message.content);
console.log('元数据:', response._metadata);
// 3. 获取系统状态
const status = client.getStatus();
console.log('性能报告:', status.performance);
console.log('成本报告:', status.cost);
// 4. 流式响应示例
const stream = await client.chatCompletion({
messages: [{ role: 'user', content: '讲一个关于编程的笑话' }],
stream: true
});
if (stream instanceof ReadableStream) {
const reader = stream.getReader();
const decoder = new TextDecoder();
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value);
console.log('流式响应:', chunk);
}
}
}
// 初始化并运行演示
demonstrateProductionClient().catch(console.error);
六、真实案例分析
6.1 案例一:AI代码审查平台的重构
背景:一个为创业公司服务的代码审查平台,原本使用直接调用OpenAI API,面临问题:
- 高峰期响应时间从2秒飙升到10秒+
- 每月GPT-4账单超过500美元
- 无法接入Claude进行更复杂的逻辑分析
重构方案:
- 用向量引擎替换所有直接API调用
- 实现智能路由:简单语法检查用GPT-3.5,复杂逻辑用Claude,安全扫描用专用模型
- 添加请求批处理和缓存层
结果:
javascript
// 重构前后对比数据
const metrics = {
before: {
avgLatency: '3500ms',
p95Latency: '12000ms',
monthlyCost: '$520',
models: ['GPT-4'],
availability: '98.5%'
},
after: {
avgLatency: '1200ms',
p95Latency: '2500ms',
monthlyCost: '$185',
models: ['GPT-5.2', 'Claude-3-opus', 'CodeLlama'],
availability: '99.9%'
}
};
// 关键改进点
const improvements = {
latencyReduction: '66%',
costReduction: '64%',
modelDiversity: '从1个增加到3个核心模型',
developerExperience: '配置时间从2天减少到2小时'
};
6.2 案例二:电商客服AI的升级
背景:电商客服机器人需要处理:
- 商品咨询(需要实时库存信息)
- 售后问题(需要理解复杂场景)
- 多语言支持(全球用户)
技术方案:
typescript
// 多模型协作架构
class ECommerceAIAgent {
private vectorEngine: ProductionVectorEngineClient;
async handleQuery(query: string, userLanguage: string) {
// 1. 语言检测和翻译
const translatedQuery = await this.translateIfNeeded(query, userLanguage);
// 2. 意图识别
const intent = await this.detectIntent(translatedQuery);
// 3. 分发给专用处理器
switch (intent) {
case 'product_inquiry':
return await this.handleProductInquiry(translatedQuery);
case 'after_sales':
return await this.handleAfterSales(translatedQuery);
case 'order_tracking':
return await this.handleOrderTracking(translatedQuery);
default:
return await this.handleGeneralQuery(translatedQuery);
}
}
private async detectIntent(query: string) {
// 使用小模型进行快速意图识别
const response = await this.vectorEngine.chatCompletion({
model: 'gpt-5.2', // 快速且便宜
messages: [
{
role: 'system',
content: '你是一个意图分类器,将用户问题分类为:product_inquiry, after_sales, order_tracking, general'
},
{
role: 'user',
content: `分类问题: ${query}`
}
],
temperature: 0.1
});
return response.choices[0].message.content.trim().toLowerCase();
}
private async handleProductInquiry(query: string) {
// 结合向量数据库进行商品检索
const relevantProducts = await this.searchProducts(query);
// 使用大模型生成详细回复
return await this.vectorEngine.chatCompletion({
model: 'claude-3-opus', // 需要深度理解
messages: [
{
role: 'system',
content: `你是一个专业的电商客服,以下是相关商品信息: ${JSON.stringify(relevantProducts)}`
},
{
role: 'user',
content: query
}
]
});
}
private async translateIfNeeded(query: string, targetLanguage: string) {
if (targetLanguage === 'zh-CN') return query;
// 使用专门的翻译模型
return await this.vectorEngine.chatCompletion({
model: 'claude-3-sonnet', // 翻译效果较好
messages: [
{
role: 'system',
content: `将用户输入翻译成中文,保持原意`
},
{
role: 'user',
content: `翻译这段话: ${query}`
}
],
temperature: 0.3
});
}
}
成果:
- 客服响应时间从平均45秒降低到8秒
- 多语言支持从5种扩展到20+种语言
- 月度AI成本降低40%
6.3 案例三:内容创作平台的AI升级
背景:一个UGC内容平台需要为创作者提供:
- 文章标题生成
- 内容扩写
- SEO优化建议
- 多平台适配改写
技术架构:
typescript
class ContentCreationPipeline {
async generateContent(seed: string, platform: 'blog' | 'twitter' | 'linkedin') {
// 并行执行多个AI任务
const [title, outline, seoSuggestions] = await Promise.all([
this.generateTitle(seed),
this.generateOutline(seed),
this.generateSEOSuggestions(seed)
]);
// 基于大纲生成完整内容
const fullContent = await this.expandOutline(outline);
// 平台适配
const platformContent = await this.adaptForPlatform(fullContent, platform);
return {
title,
outline,
fullContent,
platformContent,
seoSuggestions
};
}
private async generateTitle(seed: string) {
// 使用创造力较强的模型
return this.vectorEngine.chatCompletion({
model: 'claude-3-opus',
messages: [
{
role: 'system',
content: '你是一个爆款标题生成专家,生成5个吸引人的标题'
},
{
role: 'user',
content: `基于这个主题生成标题: ${seed}`
}
],
temperature: 0.8 // 更高的创造力
});
}
private async generateOutline(seed: string) {
// 使用逻辑性强的模型
return this.vectorEngine.chatCompletion({
model: 'gpt-5.3-codex',
messages: [
{
role: 'system',
content: '你是一个内容结构专家,生成详细的文章大纲'
},
{
role: 'user',
content: `为这个主题创建大纲: ${seed}`
}
],
temperature: 0.3 // 更确定性的输出
});
}
private async expandOutline(outline: string) {
// 使用长上下文模型
return this.vectorEngine.chatCompletion({
model: 'kimi-k2.5',
messages: [
{
role: 'system',
content: '你是一个专业作家,根据大纲扩写完整的文章'
},
{
role: 'user',
content: `请扩写这个大纲: ${outline}`
}
],
max_tokens: 4000 // 长文本生成
});
}
}
效果:
- 内容创作效率提升300%
- 平台文章平均阅读时长从1.5分钟提升到3.2分钟
- SEO流量月增长45%
七、性能优化和调试技巧
7.1 请求优化策略
typescript
// 优化前的常见问题
class UnoptimizedClient {
// 问题1: 每次请求都创建新连接
async makeRequest() {
const response = await fetch('https://api.vectorengine.ai/v1/...', {
// 每次都要进行TCP握手和TLS协商
});
}
// 问题2: 没有重用请求配置
async anotherRequest() {
const response = await fetch('https://api.vectorengine.ai/v1/...', {
headers: {
'Authorization': 'Bearer ...', // 重复定义
'Content-Type': 'application/json'
}
});
}
}
// 优化后的实现
class OptimizedClient {
private connectionPool: Map<string, any> = new Map();
private defaultHeaders: HeadersInit;
constructor(apiKey: string) {
this.defaultHeaders = {
'Authorization': `Bearer ${apiKey}`,
'Content-Type': 'application/json',
'Accept': 'application/json',
'User-Agent': 'MyApp/1.0 (VectorEngine-Client)'
};
}
async optimizedRequest(endpoint: string, body: any) {
// 1. 连接复用
let connection = this.connectionPool.get(endpoint);
if (!connection) {
connection = this.createPersistentConnection(endpoint);
this.connectionPool.set(endpoint, connection);
}
// 2. 请求合并(小请求合并)
if (this.shouldBatch(body)) {
return await this.batchRequest(endpoint, body);
}
// 3. 使用压缩
const compressedBody = await this.compressBody(body);
// 4. 智能重试
return await this.retryWithBackoff(async () => {
return connection.request({
headers: this.defaultHeaders,
body: compressedBody,
compress: true
});
});
}
private shouldBatch(body: any): boolean {
// 判断是否应该批处理
const bodySize = JSON.stringify(body).length;
return bodySize < 1024; // 小于1KB的请求考虑合并
}
private async compressBody(body: any): Promise<Buffer> {
// 使用gzip压缩请求体
const jsonString = JSON.stringify(body);
const encoder = new TextEncoder();
const data = encoder.encode(jsonString);
// 这里简化实现,实际应该使用Compression Streams API
return Buffer.from(jsonString);
}
}
7.2 监控和日志
typescript
interface RequestLog {
timestamp: Date;
model: string;
endpoint: string;
inputTokens: number;
outputTokens: number;
latency: number;
status: 'success' | 'error';
error?: string;
cost: number;
userId?: string;
requestId: string;
}
class MonitoringSystem {
private logs: RequestLog[] = [];
private readonly maxLogs = 10000;
logRequest(log: Omit<RequestLog, 'timestamp' | 'requestId'>) {
const fullLog: RequestLog = {
...log,
timestamp: new Date(),
requestId: this.generateRequestId()
};
this.logs.push(fullLog);
// 保持日志数量在限制内
if (this.logs.length > this.maxLogs) {
this.logs = this.logs.slice(-this.maxLogs);
}
// 实时分析
this.realtimeAnalysis(fullLog);
}
private generateRequestId(): string {
return `req_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
}
private realtimeAnalysis(log: RequestLog) {
// 检查异常模式
if (log.latency > 10000) { // 10秒以上
this.alertSlowRequest(log);
}
if (log.status === 'error') {
this.alertErrorRequest(log);
}
// 成本异常检测
const hourlyCost = this.calculateHourlyCost();
if (hourlyCost > 10) { // 每小时超过10美元
this.alertHighCost(hourlyCost);
}
}
private calculateHourlyCost(): number {
const oneHourAgo = new Date(Date.now() - 60 * 60 * 1000);
const recentLogs = this.logs.filter(log => log.timestamp > oneHourAgo);
return recentLogs.reduce((sum, log) => sum + log.cost, 0);
}
getPerformanceMetrics(timeRange: '1h' | '24h' | '7d') {
const now = new Date();
let startTime: Date;
switch (timeRange) {
case '1h':
startTime = new Date(now.getTime() - 60 * 60 * 1000);
break;
case '24h':
startTime = new Date(now.getTime() - 24 * 60 * 60 * 1000);
break;
case '7d':
startTime = new Date(now.getTime() - 7 * 24 * 60 * 60 * 1000);
break;
}
const relevantLogs = this.logs.filter(log => log.timestamp > startTime);
const byModel = new Map<string, {
count: number;
totalLatency: number;
totalCost: number;
errors: number;
}>();
relevantLogs.forEach(log => {
const current = byModel.get(log.model) || {
count: 0,
totalLatency: 0,
totalCost: 0,
errors: 0
};
current.count++;
current.totalLatency += log.latency;
current.totalCost += log.cost;
if (log.status === 'error') current.errors++;
byModel.set(log.model, current);
});
return Array.from(byModel.entries()).map(([model, data]) => ({
model,
requestCount: data.count,
avgLatency: data.totalLatency / data.count,
successRate: ((data.count - data.errors) / data.count) * 100,
totalCost: data.totalCost,
costPerRequest: data.totalCost / data.count
}));
}
// 警报方法
private alertSlowRequest(log: RequestLog) {
console.warn(`慢请求警报: ${log.model} 耗时${log.latency}ms`);
// 实际项目中可以发送到Slack/钉钉/邮件
}
private alertErrorRequest(log: RequestLog) {
console.error(`错误请求警报: ${log.model} 失败: ${log.error}`);
}
private alertHighCost(hourlyCost: number) {
console.warn(`高成本警报: 每小时成本$${hourlyCost.toFixed(2)}`);
}
}
// 使用示例
const monitor = new MonitoringSystem();
// 在每次请求后记录
async function makeMonitoredRequest(model: string, prompt: string) {
const startTime = Date.now();
try {
const response = await vectorEngineClient.chatCompletion({
model,
messages: [{ role: 'user', content: prompt }]
});
const latency = Date.now() - startTime;
monitor.logRequest({
model,
endpoint: '/chat/completions',
inputTokens: estimateTokens(prompt),
outputTokens: estimateTokens(response.choices[0].message.content),
latency,
status: 'success',
cost: calculateCost(model, inputTokens, outputTokens)
});
return response;
} catch (error) {
const latency = Date.now() - startTime;
monitor.logRequest({
model,
endpoint: '/chat/completions',
inputTokens: estimateTokens(prompt),
outputTokens: 0,
latency,
status: 'error',
error: error.message,
cost: 0
});
throw error;
}
}
// 获取性能报告
const metrics = monitor.getPerformanceMetrics('24h');
console.table(metrics);
八、向量引擎的高级应用场景
8.1 实现AI代理(Agent)系统
typescript
interface Agent {
name: string;
description: string;
capabilities: string[];
model: string;
temperature: number;
}
class AgentOrchestrator {
private agents: Agent[] = [
{
name: '代码专家',
description: '处理所有代码相关任务',
capabilities: ['代码生成', '代码审查', '调试', '重构'],
model: 'gpt-5.3-codex',
temperature: 0.1
},
{
name: '文档分析师',
description: '分析和总结文档内容',
capabilities: ['文档总结', '信息提取', '要点归纳'],
model: 'kimi-k2.5',
temperature: 0.2
},
{
name: '创意写手',
description: '生成创意内容和文案',
capabilities: ['文案创作', '故事写作', '营销文案'],
model: 'claude-3-opus',
temperature: 0.8
},
{
name: '视觉助手',
description: '处理图像相关任务',
capabilities: ['图像分析', '图像生成描述', '视觉问答'],
model: 'gemini-3-pro-image-preview',
temperature: 0.3
}
];
async orchestrateTask(userRequest: string, context?: any) {
// 1. 任务分析和分配
const taskAnalysis = await this.analyzeTask(userRequest);
// 2. 选择最合适的Agent
const selectedAgent = this.selectAgent(taskAnalysis);
// 3. 准备上下文
const agentContext = this.prepareContext(userRequest, context);
// 4. 执行任务
const result = await this.executeWithAgent(selectedAgent, agentContext);
// 5. 结果验证和优化
const verifiedResult = await this.verifyResult(result, taskAnalysis);
return {
agent: selectedAgent.name,
model: selectedAgent.model,
result: verifiedResult,
confidence: taskAnalysis.confidence
};
}
private async analyzeTask(userRequest: string) {
// 使用小模型快速分析任务
const analysisPrompt = `分析以下任务,返回JSON格式:
{
"taskType": "code" | "document" | "creative" | "visual" | "other",
"complexity": 1-10,
"requiredCapabilities": string[],
"estimatedTokens": number,
"confidence": 0-1
}
任务: ${userRequest}`;
const response = await vectorEngineClient.chatCompletion({
model: 'gpt-5.2',
messages: [{ role: 'user', content: analysisPrompt }],
temperature: 0.1
});
return JSON.parse(response.choices[0].message.content);
}
private selectAgent(taskAnalysis: any): Agent {
// 根据任务需求选择最合适的Agent
const suitableAgents = this.agents.filter(agent => {
// 检查能力匹配
return taskAnalysis.requiredCapabilities.every((capability: string) =>
agent.capabilities.includes(capability)
);
});
if (suitableAgents.length === 0) {
// 没有完全匹配的,选择最接近的
return this.agents.reduce((best, current) => {
const bestScore = this.calculateAgentScore(best, taskAnalysis);
const currentScore = this.calculateAgentScore(current, taskAnalysis);
return currentScore > bestScore ? current : best;
});
}
// 从合适的Agent中选择最佳
return suitableAgents.reduce((best, current) => {
const bestScore = this.calculateAgentScore(best, taskAnalysis);
const currentScore = this.calculateAgentScore(current, taskAnalysis);
return currentScore > bestScore ? current : best;
});
}
private calculateAgentScore(agent: Agent, taskAnalysis: any): number {
let score = 0;
// 能力匹配度
const capabilityMatch = taskAnalysis.requiredCapabilities.filter((cap: string) =>
agent.capabilities.includes(cap)
).length / taskAnalysis.requiredCapabilities.length;
score += capabilityMatch * 0.6;
// 复杂度匹配(复杂任务用大模型,简单任务用小模型)
const complexityScore = 1 - Math.abs(taskAnalysis.complexity - 5) / 10;
score += complexityScore * 0.2;
// 成本考虑(简单任务倾向于便宜模型)
const modelCost = this.getModelCost(agent.model);
const costScore = 1 - modelCost / 0.1; // 假设0.1是最高成本
score += costScore * 0.2;
return score;
}
private getModelCost(model: string): number {
const costs: Record<string, number> = {
'gpt-5.3-codex': 0.015,
'gpt-5.2': 0.003,
'claude-3-opus': 0.018,
'kimi-k2.5': 0.008,
'gemini-3-pro-preview': 0.012
};
return costs[model] || 0.01;
}
}
// 使用示例
const orchestrator = new AgentOrchestrator();
async function testOrchestration() {
const tasks = [
'帮我写一个React表单验证Hook',
'总结这篇技术文章的核心观点',
'为我们的新产品写一个吸引人的广告语',
'描述这张图片中的内容'
];
for (const task of tasks) {
const result = await orchestrator.orchestrateTask(task);
console.log(`任务: ${task}`);
console.log(`分配的Agent: ${result.agent}`);
console.log(`使用的模型: ${result.model}`);
console.log(`置信度: ${result.confidence}`);
console.log(`结果: ${result.result.slice(0, 100)}...\n`);
}
}
8.2 实现工作流引擎
typescript
interface WorkflowStep {
id: string;
name: string;
description: string;
inputType: string;
outputType: string;
model: string;
promptTemplate: string;
temperature?: number;
maxTokens?: number;
}
interface Workflow {
id: string;
name: string;
description: string;
steps: WorkflowStep[];
dependencies: Record<string, string[]>; // 步骤依赖关系
}
class WorkflowEngine {
private workflows: Map<string, Workflow> = new Map();
registerWorkflow(workflow: Workflow) {
this.workflows.set(workflow.id, workflow);
}
async executeWorkflow(workflowId: string, initialInput: any) {
const workflow = this.workflows.get(workflowId);
if (!workflow) {
throw new Error(`工作流不存在: ${workflowId}`);
}
// 验证依赖关系
this.validateDependencies(workflow);
// 执行步骤
const results = new Map<string, any>();
const executedSteps = new Set<string>();
// 找到起始步骤(没有依赖的步骤)
const startSteps = workflow.steps.filter(step =>
!workflow.dependencies[step.id] || workflow.dependencies[step.id].length === 0
);
for (const step of startSteps) {
await this.executeStepRecursive(step, workflow, initialInput, results, executedSteps);
}
// 收集最终输出
const finalOutput: Record<string, any> = {};
workflow.steps.forEach(step => {
if (results.has(step.id)) {
finalOutput[step.name] = results.get(step.id);
}
});
return finalOutput;
}
private async executeStepRecursive(
step: WorkflowStep,
workflow: Workflow,
initialInput: any,
results: Map<string, any>,
executedSteps: Set<string>
) {
if (executedSteps.has(step.id)) {
return; // 已经执行过
}
// 检查依赖是否都已执行
const dependencies = workflow.dependencies[step.id] || [];
for (const depId of dependencies) {
if (!executedSteps.has(depId)) {
const depStep = workflow.steps.find(s => s.id === depId);
if (depStep) {
await this.executeStepRecursive(depStep, workflow, initialInput, results, executedSteps);
}
}
}
// 收集输入
const stepInputs: Record<string, any> = {};
// 如果是第一步,使用初始输入
if (dependencies.length === 0) {
stepInputs.input = initialInput;
} else {
// 从依赖步骤获取输入
for (const depId of dependencies) {
const depResult = results.get(depId);
if (depResult !== undefined) {
stepInputs[depId] = depResult;
}
}
}
// 执行当前步骤
const result = await this.executeStep(step, stepInputs);
results.set(step.id, result);
executedSteps.add(step.id);
// 执行后续步骤
const nextSteps = workflow.steps.filter(s =>
workflow.dependencies[s.id]?.includes(step.id)
);
for (const nextStep of nextSteps) {
await this.executeStepRecursive(nextStep, workflow, initialInput, results, executedSteps);
}
}
private async executeStep(step: WorkflowStep, inputs: Record<string, any>): Promise<any> {
// 构建提示词
const prompt = this.buildPrompt(step.promptTemplate, inputs);
// 调用AI模型
const response = await vectorEngineClient.chatCompletion({
model: step.model,
messages: [{ role: 'user', content: prompt }],
temperature: step.temperature || 0.7,
maxTokens: step.maxTokens
});
// 解析输出
return this.parseOutput(response.choices[0].message.content, step.outputType);
}
private buildPrompt(template: string, inputs: Record<string, any>): string {
let prompt = template;
// 替换模板变量
Object.entries(inputs).forEach(([key, value]) => {
const placeholder = `{{${key}}}`;
prompt = prompt.replace(
new RegExp(placeholder, 'g'),
typeof value === 'string' ? value : JSON.stringify(value, null, 2)
);
});
return prompt;
}
private parseOutput(output: string, outputType: string): any {
switch (outputType) {
case 'json':
try {
return JSON.parse(output);
} catch {
// 尝试提取JSON
const jsonMatch = output.match(/\{[\s\S]*\}/);
return jsonMatch ? JSON.parse(jsonMatch[0]) : { raw: output };
}
case 'array':
// 尝试解析为数组
try {
return JSON.parse(output);
} catch {
// 尝试按行分割
return output.split('\n').filter(line => line.trim());
}
case 'boolean':
const lowerOutput = output.toLowerCase().trim();
return lowerOutput.includes('是') ||
lowerOutput.includes('true') ||
lowerOutput.includes('yes');
case 'number':
const numMatch = output.match(/[\d.]+/);
return numMatch ? parseFloat(numMatch[0]) : 0;
default:
return output;
}
}
private validateDependencies(workflow: Workflow) {
// 检查循环依赖
const visited = new Set<string>();
const recursionStack = new Set<string>();
const hasCycle = (stepId: string): boolean => {
if (recursionStack.has(stepId)) {
return true;
}
if (visited.has(stepId)) {
return false;
}
visited.add(stepId);
recursionStack.add(stepId);
const dependencies = workflow.dependencies[stepId] || [];
for (const depId of dependencies) {
if (hasCycle(depId)) {
return true;
}
}
recursionStack.delete(stepId);
return false;
};
for (const step of workflow.steps) {
if (hasCycle(step.id)) {
throw new Error(`工作流存在循环依赖: ${step.id}`);
}
}
// 检查所有依赖都存在
for (const [stepId, deps] of Object.entries(workflow.dependencies)) {
for (const depId of deps) {
if (!workflow.steps.some(s => s.id === depId)) {
throw new Error(`依赖不存在: ${stepId} 依赖于 ${depId}`);
}
}
}
}
}
// 使用示例:创建一个内容创作工作流
const contentCreationWorkflow: Workflow = {
id: 'content-creation',
name: 'AI内容创作工作流',
description: '从主题到完整文章的自动化创作流程',
steps: [
{
id: 'topic-analysis',
name: '主题分析',
description: '分析主题并生成关键词',
inputType: 'string',
outputType: 'json',
model: 'gpt-5.2',
promptTemplate: `分析以下主题,返回JSON格式的关键词和角度:
{
"keywords": string[],
"angles": string[],
"targetAudience": string
}
主题: {{input}}`
},
{
id: 'outline-generation',
name: '大纲生成',
description: '基于关键词生成文章大纲',
inputType: 'json',
outputType: 'json',
model: 'claude-3-opus',
promptTemplate: `基于以下分析结果,生成详细文章大纲:
{{topic-analysis}}
返回JSON格式:
{
"title": string,
"sections": Array<{
"heading": string,
"subpoints": string[]
}>
}`
},
{
id: 'content-expansion',
name: '内容扩展',
description: '根据大纲扩展成完整内容',
inputType: 'json',
outputType: 'string',
model: 'kimi-k2.5',
promptTemplate: `根据以下大纲扩展成完整的文章:
{{outline-generation}}
要求:
1. 语言生动有趣
2. 每部分至少300字
3. 包含实际案例
4. 适合{{topic-analysis.targetAudience}}阅读`,
maxTokens: 4000
},
{
id: 'seo-optimization',
name: 'SEO优化',
description: '优化文章SEO',
inputType: 'string',
outputType: 'json',
model: 'gpt-5.2',
promptTemplate: `分析以下文章的SEO优化建议:
{{content-expansion}}
返回JSON格式:
{
"metaDescription": string,
"focusKeywords": string[],
"improvements": string[]
}`
}
],
dependencies: {
'outline-generation': ['topic-analysis'],
'content-expansion': ['outline-generation'],
'seo-optimization': ['content-expansion']
}
};
// 执行工作流
const engine = new WorkflowEngine();
engine.registerWorkflow(contentCreationWorkflow);
async function runContentWorkflow() {
const topic = 'React Server Components的最佳实践';
const result = await engine.executeWorkflow('content-creation', topic);
console.log('生成的文章大纲:', result['大纲生成']);
console.log('完整文章长度:', result['内容扩展']?.length || 0);
console.log('SEO建议:', result['SEO优化']);
}
九、总结和最佳实践
经过上面的详细实现和分析,这里总结在向量引擎实践中的关键经验:
9.1 核心优势回顾
- 统一的API接口:一套代码调用所有主流模型
- 智能路由:根据任务自动选择最佳模型
- 成本优化:按token计费,余额永不过期
- 稳定性保障:CN2专线+智能负载均衡
- 企业级支持:高并发+自动扩缩容
9.2 配置建议
yaml
# 推荐的向量引擎配置
vector_engine:
# 基础配置
base_url: "https://api.vectorengine.ai/v1"
api_key: "${VECTOR_ENGINE_API_KEY}"
# 模型策略
default_strategy: "cost-effective" # cost-effective | performance | balanced
# 超时和重试
timeout: 30000 # 30秒
max_retries: 3
retry_delay: 1000
# 监控和日志
enable_metrics: true
log_level: "INFO"
cost_alert_threshold: 50 # 美元
# 缓存配置
enable_cache: true
cache_ttl: 300 # 5分钟
# 模型特定配置
model_configs:
gpt-5.3-codex:
temperature: 0.1
max_tokens: 4000
use_case: "代码生成、技术文档"
claude-3-opus:
temperature: 0.3
max_tokens: 8000
use_case: "复杂推理、创意写作"
kimi-k2.5:
temperature: 0.2
max_tokens: 32000
use_case: "长文档处理、分析总结"
gemini-3-pro-preview:
temperature: 0.4
max_tokens: 2000
use_case: "多模态任务、快速响应"
9.3 性能优化清单
- 连接复用:使用HTTP连接池
- 请求合并:小请求合并发送
- 智能缓存:缓存频繁请求的结果
- 延迟加载:非关键模型按需加载
- 错误降级:主模型失败时自动降级
- 监控告警:实时监控成本和性能
- 定期优化:每周review模型使用情况
9.4 成本控制策略
typescript
// 成本控制的最佳实践
class CostControlStrategy {
// 1. 模型选择策略
static selectModelByTask(task: string, budget: number): string {
const strategies = {
// 代码任务:使用专门优化过的代码模型
code: {
highQuality: 'gpt-5.3-codex', // 复杂代码
balanced: 'gpt-5.2', // 一般代码
costEffective: 'claude-3-sonnet' // 简单代码
},
// 文本任务:根据长度选择
text: {
short: 'gpt-5.2', // 短文本
medium: 'claude-3-sonnet', // 中等长度
long: 'kimi-k2.5' // 长文档
},
// 创意任务:根据创造性需求选择
creative: {
highlyCreative: 'claude-3-opus', // 高创造性
moderatelyCreative: 'gpt-5.2', // 中等创造性
templateBased: 'claude-3-haiku' // 模板化
}
};
// 2. 基于预算选择
const modelCosts = {
'gpt-5.3-codex': 0.015,
'gpt-5.2': 0.003,
'claude-3-opus': 0.018,
'claude-3-sonnet': 0.008,
'kimi-k2.5': 0.006,
'claude-3-haiku': 0.001
};
// 3. 智能路由
if (budget < 0.01) {
// 预算极低,使用成本最低的模型
return 'claude-3-haiku';
} else if (budget < 0.05) {
// 中等预算,平衡质量和成本
return task.includes('代码') ? 'gpt-5.2' : 'claude-3-sonnet';
} else {
// 预算充足,使用最佳模型
return task.includes('代码') ? 'gpt-5.3-codex' : 'claude-3-opus';
}
}
// 4. 响应长度控制
static estimateOptimalMaxTokens(task: string): number {
if (task.length < 100) return 500; // 简短任务
if (task.length < 500) return 1000; // 中等任务
if (task.length < 2000) return 2000; // 详细任务
return 4000; // 复杂任务
}
// 5. 温度参数优化
static selectTemperature(taskType: string): number {
const temperatures = {
code: 0.1, // 代码需要确定性
analysis: 0.3, // 分析任务需要一定创造性
creative: 0.7, // 创意任务需要高创造性
summary: 0.2 // 总结需要准确性
};
// 检测任务类型
if (taskType.includes('代码') || taskType.includes('实现')) return temperatures.code;
if (taskType.includes('分析') || taskType.includes('思考')) return temperatures.analysis;
if (taskType.includes('创意') || taskType.includes('故事')) return temperatures.creative;
return temperatures.summary;
}
}
9.5 未来展望
随着AI模型的快速发展,向量引擎这样的统一接入层将变得更加重要。我们可以预见:
- 更多模型集成:未来会有更多专用模型加入
- 更智能的路由:基于实时性能数据的动态路由
- 成本预测:基于使用模式的成本预测和优化建议
- 自动调优:根据任务自动优化模型参数
十、开始使用向量引擎
10.1 快速开始
bash
# 1. 注册获取API Key
# 访问向量引擎官网完成注册
# 2. 安装必要的依赖
npm install openai axios
# 3. 基础配置
export VECTOR_ENGINE_API_KEY='你的API密钥'
10.2 最小可行示例
typescript
// 最简单的使用示例
import OpenAI from 'openai';
const client = new OpenAI({
baseURL: 'https://api.vectorengine.ai/v1',
apiKey: process.env.VECTOR_ENGINE_API_KEY,
});
async function quickStart() {
const response = await client.chat.completions.create({
model: 'gpt-5.2', // 可以直接使用各种模型
messages: [
{ role: 'user', content: '你好,向量引擎!' }
],
});
console.log(response.choices[0].message.content);
}
quickStart().catch(console.error);
10.3 常见问题解答
Q: 向量引擎支持哪些模型? A: 支持GPT全系列、Claude全系列、Gemini、Kimi、DeepSeek等20+主流模型,具体列表可在官网查看。
Q: 如何控制成本? A: 1) 按token计费,用多少付多少;2) 余额永不过期;3) 后台有详细的消费明细。
Q: 是否支持流式响应? A: 完全支持,使用方式和OpenAI官方API完全一致。
Q: 如何处理高并发? A: 默认支持500次/秒,如需更高并发可联系客服调整。
Q: 是否有使用限制? A: 没有强制限制,但建议合理使用。异常使用可能会触发风控。
Q: 如何保证稳定性? A: CN2专线+多节点负载均衡+自动故障转移,提供99.9%的可用性保证。
结语
向量引擎本质上是为开发者提供了一个统一的AI模型接入层,它解决了我们在AI应用开发中最头痛的问题:
- 接口碎片化 → 统一API
- 网络不稳定 → 全球加速
- 成本不可控 → 按量付费
- 运维复杂 → 开箱即用
通过本文的详细实现和最佳实践,你应该能够:
- 快速将向量引擎集成到现有项目中
- 设计出高效可靠的AI调用架构
- 有效控制成本和保障稳定性
- 构建复杂的多模型协作系统
AI开发不应该是一个体力活,而向量引擎正是为了解放开发者的生产力而生。它让我们能够更专注于业务逻辑和创新,而不是基础设施的维护。
技术发展的本质是让复杂的事情变简单。 向量引擎正在做的,就是让AI开发变得像调用普通API一样简单。
如果你还没有尝试过,现在是最好的时机。从简单的集成开始,逐步探索多模型的强大能力,你会发现AI开发的体验完全不同。
记住:最好的工具不是功能最多的,而是让你忘记它存在的工具。 向量引擎正在成为这样的工具。