厨房用品厨房物体食物检测数据集VOC+YOLO格式9366张69类别

特别注意数据集中里面图片都是从大模型生成的视频截图的,注意查看图片预览

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):9366

标注数量(xml文件个数):9366

标注数量(txt文件个数):9366

标注类别数:69

所在github仓库:firc-dataset

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Apple","Apple_sliced","Book","Book_opened","Bottle","Bottle_filled","Bowl","Bowl_filled","Bread","Bread_cooked_sliced","Bread_sliced","ButterKnife","Cabinet","Cabinet_opened","CoffeeMachine","CounterTop","CreditCard","Cup","Cup_filled","DishSponge","Drawer","Drawer_opened","Egg","Egg_cooked_sliced","Egg_sliced","Faucet","Floor","Fork","Fridge","Fridge_opened","GarbageCan","HousePlant","Kettle","Knife","Lettuce","Lettuce_sliced","LightSwitch","Microwave","Microwave_opened","Mug","Mug_filled","Pan","PaperTowelRoll","PepperShaker","Plate","Pot","Pot_filled","Potato","Potato_cooked","Potato_cooked_sliced","Potato_sliced","SaltShaker","Shelf","ShelvingUnit","Sink","SoapBottle","Spatula","Spoon","Statue","Stool","StoveBurner","StoveKnob","Toaster","Tomato","Tomato_sliced","Vase","Window","WineBottle","WineBottle_filled"]

每个类别标注的框数:

Apple(苹果)框数 = 634

Apple_sliced(苹果切片)框数 = 837

Book(书本)框数 = 1575

Book_opened(打开的书本)框数 = 332

Bottle(瓶子)框数 = 1355

Bottle_filled(装满的瓶子)框数 = 344

Bowl(碗)框数 = 1873

Bowl_filled(装满的碗)框数 = 458

Bread(面包)框数 = 2813

Bread_cooked_sliced(熟面包切片)框数 = 230

Bread_sliced(面包切片)框数 = 5264

ButterKnife(黄油刀)框数 = 1802

Cabinet(橱柜)框数 = 16998

Cabinet_opened(打开的橱柜)框数 = 1576

CoffeeMachine(咖啡机)框数 = 2122

CounterTop(台面)框数 = 10326

CreditCard(信用卡)框数 = 678

Cup(杯子)框数 = 2169

Cup_filled(装满的杯子)框数 = 447

DishSponge(洗碗海绵)框数 = 1023

Drawer(抽屉)框数 = 14301

Drawer_opened(打开的抽屉)框数 = 696

Egg(鸡蛋)框数 = 222

Egg_cooked_sliced(熟鸡蛋切片)框数 = 344

Egg_sliced(鸡蛋切片)框数 = 1239

Faucet(水龙头)框数 = 1982

Floor(地板)框数 = 6408

Fork(叉子)框数 = 2223

Fridge(冰箱)框数 = 1896

Fridge_opened(打开的冰箱)框数 = 317

GarbageCan(垃圾桶)框数 = 989

HousePlant(室内植物)框数 = 2044

Kettle(水壶)框数 = 2625

Knife(刀)框数 = 3119

Lettuce(生菜)框数 = 1959

Lettuce_sliced(生菜切片)框数 = 5407

LightSwitch(电灯开关)框数 = 370

Microwave(微波炉)框数 = 1856

Microwave_opened(打开的微波炉)框数 = 371

Mug(马克杯)框数 = 1470

Mug_filled(装满的马克杯)框数 = 252

Pan(平底锅)框数 = 3033

PaperTowelRoll(厨房纸巾卷)框数 = 1679

PepperShaker(胡椒瓶)框数 = 1187

Plate(盘子)框数 = 1589

Pot(锅)框数 = 2362

Pot_filled(装满的锅)框数 = 911

Potato(土豆)框数 = 1327

Potato_cooked(熟土豆)框数 = 385

Potato_cooked_sliced(熟土豆切片)框数 = 379

Potato_sliced(土豆切片)框数 = 1089

SaltShaker(盐瓶)框数 = 1319

Shelf(搁板)框数 = 7509

ShelvingUnit(货架单元)框数 = 3332

Sink(水槽)框数 = 3715

SoapBottle(皂液瓶)框数 = 2083

Spatula(锅铲)框数 = 1033

Spoon(勺子)框数 = 2356

Statue(雕像)框数 = 1814

Stool(凳子)框数 = 2839

StoveBurner(炉灶燃烧器)框数 = 7571

StoveKnob(炉灶旋钮)框数 = 3041

Toaster(烤面包机)框数 = 1855

Tomato(西红柿)框数 = 1340

Tomato_sliced(西红柿切片)框数 = 3644

Vase(花瓶)框数 = 2360

Window(窗户)框数 = 3616

WineBottle(葡萄酒瓶)框数 = 1058

WineBottle_filled(装满的葡萄酒瓶)框数 = 1324

总框数:168696

图片分辨率:720x720

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:数据集没有划分训练验证测试集需自行划分

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证

图片预览:

标注例子:

相关推荐
SuniaWang1 小时前
Spring AI 2.x 全面指南:架构升级、工具调用、多模型生态与实战示例
java·人工智能·后端·学习·spring·框架
Faker66363aaa1 小时前
织物破损检测与分类-YOLO11-C3k2-MSMHSA-CGLU模型详解
人工智能·分类·数据挖掘
mwq301231 小时前
anthropic-academy:工具使用(一)
人工智能
mwq301231 小时前
Claude 完整代码教程(转载)
人工智能
DisonTangor1 小时前
【阿里拥抱开源】阿里inclusionAI开源多模态Ming-flash-omni 2.0
人工智能·开源·aigc
MaoziShan1 小时前
CMU Subword Modeling | 01 Things Smaller than Words
人工智能·机器学习·自然语言处理
文艺倾年2 小时前
【免训练&测试时扩展】Code Agent可控进化
人工智能·软件工程·强化学习·vibecoding
宇擎智脑科技2 小时前
SurrealDB:面向AI原生应用的新一代多模型数据库深度解析
数据库·人工智能·ai-native
一品威客爱开发2 小时前
网游 APP 开发:聚焦交互体验与多端协同
人工智能