特别注意数据集中里面图片都是从大模型生成的视频截图的,注意查看图片预览
数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)
图片数量(jpg文件个数):9366
标注数量(xml文件个数):9366
标注数量(txt文件个数):9366
标注类别数:69
所在github仓库:firc-dataset
标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Apple","Apple_sliced","Book","Book_opened","Bottle","Bottle_filled","Bowl","Bowl_filled","Bread","Bread_cooked_sliced","Bread_sliced","ButterKnife","Cabinet","Cabinet_opened","CoffeeMachine","CounterTop","CreditCard","Cup","Cup_filled","DishSponge","Drawer","Drawer_opened","Egg","Egg_cooked_sliced","Egg_sliced","Faucet","Floor","Fork","Fridge","Fridge_opened","GarbageCan","HousePlant","Kettle","Knife","Lettuce","Lettuce_sliced","LightSwitch","Microwave","Microwave_opened","Mug","Mug_filled","Pan","PaperTowelRoll","PepperShaker","Plate","Pot","Pot_filled","Potato","Potato_cooked","Potato_cooked_sliced","Potato_sliced","SaltShaker","Shelf","ShelvingUnit","Sink","SoapBottle","Spatula","Spoon","Statue","Stool","StoveBurner","StoveKnob","Toaster","Tomato","Tomato_sliced","Vase","Window","WineBottle","WineBottle_filled"]
每个类别标注的框数:
Apple(苹果)框数 = 634
Apple_sliced(苹果切片)框数 = 837
Book(书本)框数 = 1575
Book_opened(打开的书本)框数 = 332
Bottle(瓶子)框数 = 1355
Bottle_filled(装满的瓶子)框数 = 344
Bowl(碗)框数 = 1873
Bowl_filled(装满的碗)框数 = 458
Bread(面包)框数 = 2813
Bread_cooked_sliced(熟面包切片)框数 = 230
Bread_sliced(面包切片)框数 = 5264
ButterKnife(黄油刀)框数 = 1802
Cabinet(橱柜)框数 = 16998
Cabinet_opened(打开的橱柜)框数 = 1576
CoffeeMachine(咖啡机)框数 = 2122
CounterTop(台面)框数 = 10326
CreditCard(信用卡)框数 = 678
Cup(杯子)框数 = 2169
Cup_filled(装满的杯子)框数 = 447
DishSponge(洗碗海绵)框数 = 1023
Drawer(抽屉)框数 = 14301
Drawer_opened(打开的抽屉)框数 = 696
Egg(鸡蛋)框数 = 222
Egg_cooked_sliced(熟鸡蛋切片)框数 = 344
Egg_sliced(鸡蛋切片)框数 = 1239
Faucet(水龙头)框数 = 1982
Floor(地板)框数 = 6408
Fork(叉子)框数 = 2223
Fridge(冰箱)框数 = 1896
Fridge_opened(打开的冰箱)框数 = 317
GarbageCan(垃圾桶)框数 = 989
HousePlant(室内植物)框数 = 2044
Kettle(水壶)框数 = 2625
Knife(刀)框数 = 3119
Lettuce(生菜)框数 = 1959
Lettuce_sliced(生菜切片)框数 = 5407
LightSwitch(电灯开关)框数 = 370
Microwave(微波炉)框数 = 1856
Microwave_opened(打开的微波炉)框数 = 371
Mug(马克杯)框数 = 1470
Mug_filled(装满的马克杯)框数 = 252
Pan(平底锅)框数 = 3033
PaperTowelRoll(厨房纸巾卷)框数 = 1679
PepperShaker(胡椒瓶)框数 = 1187
Plate(盘子)框数 = 1589
Pot(锅)框数 = 2362
Pot_filled(装满的锅)框数 = 911
Potato(土豆)框数 = 1327
Potato_cooked(熟土豆)框数 = 385
Potato_cooked_sliced(熟土豆切片)框数 = 379
Potato_sliced(土豆切片)框数 = 1089
SaltShaker(盐瓶)框数 = 1319
Shelf(搁板)框数 = 7509
ShelvingUnit(货架单元)框数 = 3332
Sink(水槽)框数 = 3715
SoapBottle(皂液瓶)框数 = 2083
Spatula(锅铲)框数 = 1033
Spoon(勺子)框数 = 2356
Statue(雕像)框数 = 1814
Stool(凳子)框数 = 2839
StoveBurner(炉灶燃烧器)框数 = 7571
StoveKnob(炉灶旋钮)框数 = 3041
Toaster(烤面包机)框数 = 1855
Tomato(西红柿)框数 = 1340
Tomato_sliced(西红柿切片)框数 = 3644
Vase(花瓶)框数 = 2360
Window(窗户)框数 = 3616
WineBottle(葡萄酒瓶)框数 = 1058
WineBottle_filled(装满的葡萄酒瓶)框数 = 1324
总框数:168696
图片分辨率:720x720
使用标注工具:labelImg
标注规则:对类别进行画矩形框
重要说明:数据集没有划分训练验证测试集需自行划分
特别声明:本数据集不对训练的模型或者权重文件精度作任何保证
图片预览:


标注例子:

