通过sdk获取ecs指标

cpu使用率

python 复制代码
import json

from alibabacloud_cms20190101.client import Client as Cms20190101Client
from alibabacloud_tea_openapi import models as open_api_models
from alibabacloud_cms20190101 import models as cms_20190101_models
from alibabacloud_tea_util import models as util_models

# 配置客户端参数
config = open_api_models.Config(
    access_key_id = "",
    access_key_secret = ""
)

# 设置控制台的Endpoint
config.endpoint = ''

# 创建客户端实例
client = Cms20190101Client(config)
# print(client)

# 构造请求体
request = cms_20190101_models.DescribeMetricLastRequest(
    # ECS监控指标的命名空间
    namespace='acs_ecs_dashboard',
    # 要查询的指标:CPU利用率
    metric_name='CPUUtilization',
    # 如需指定单个ECS实例,取消下面注释并替换实例ID
    # dimensions=json.dumps({'instanceId': 'i-xxxxxxx'})
)

# 运行时选项
runtime = util_models.RuntimeOptions()

# 响应体
response = client.describe_metric_last_with_options(request, runtime)
# print(response)

# 先把响应体转成字典(解决SDK返回混合结构的问题)
response_dict = response.to_map()

# 提取key为body的value(是子字典),再取出key为Datapoints对应的value
datapoints_str = response_dict['body']['Datapoints']
# json格式的数据转列表
datapoints_list = json.loads(datapoints_str)

R = []

# 提取目标字段
for i in datapoints_list:
    instance_id = i.get('instanceId')
    average = i.get('Average')
    
    t = (instance_id, average)
    R.append(t)

# print(R)

count = len(R)
total = 0

for i in R:
    total += i[1]

cpu_average_usage_util = round(total / count, 3)
print(f"{count}台实例的cpu平均使用率为{cpu_average_usage_util}%")

内存使用率

python 复制代码
import json

from alibabacloud_cms20190101.client import Client as Cms20190101Client
from alibabacloud_tea_openapi import models as open_api_models
from alibabacloud_cms20190101 import models as cms_20190101_models
from alibabacloud_tea_util import models as util_models

config = open_api_models.Config(
    access_key_id = "",
    access_key_secret = ""
)

config.endpoint = ''

client = Cms20190101Client(config)
# print(client)

request = cms_20190101_models.DescribeMetricLastRequest(
    namespace='acs_ecs_dashboard',
    metric_name='vm.MemoryUtilization',
)

runtime = util_models.RuntimeOptions()

response = client.describe_metric_last_with_options(request, runtime)
# print(response)

response_dict = response.to_map()

datapoints_str = response_dict['body']['Datapoints']
datapoints_list = json.loads(datapoints_str)

R = []

for i in datapoints_list:
    instance_id = i.get('instanceId')
    average = i.get('Average')
    
    t = (instance_id, average)
    R.append(t)

# print(R)

count = len(R)
total = 0

for i in R:
    total += i[1]

cpu_average_usage_util = round(total / count, 3)
print(f"{count}台通算实例的内存平均使用率为{cpu_average_usage_util}%")
相关推荐
喵手1 小时前
Python爬虫实战:失败重试分级 - DNS/超时/403 分策略处理 + 重试退避等!
爬虫·python·爬虫实战·零基础python爬虫教学·失败重试分级·dns/超时·重试退避
得一录2 小时前
Python 算法高级篇:布谷鸟哈希算法与分布式哈希表
python·算法·aigc·哈希算法
Faker66363aaa2 小时前
基于Cascade-Mask-RCNN和RegNetX-4GF的果蝇检测与识别系统——COCO数据集训练与优化
python
聂 可 以2 小时前
解决Pycharm中(Python)软件包下载速度很慢、甚至下载失败的问题
ide·python·pycharm
七夜zippoe2 小时前
强化学习实战指南:从Q-Learning到PPO的工业级应用
python·openai·超参数调优·q-learning·mdp
JaydenAI2 小时前
[拆解LangChain执行引擎]非常规Pending Write的持久化
python·langchain
MoonPointer-Byte2 小时前
【Python实战】我开发了一款“诗意”待办软件:MoonTask(附源码+工程化思路)
开发语言·python·custom tkinter
~央千澈~2 小时前
抖音弹幕游戏开发之第11集:礼物触发功能·优雅草云桧·卓伊凡
java·前端·python
程序员徐师兄2 小时前
Python 基于深度学习的电影评论可视化系统
python·深度学习·深度学习的电影评论可视化系统·深度学习评论情感分析