互联网大厂Java面试场景解析:核心技术点与业务场景的深度结合

标题:互联网大厂Java面试场景解析:核心技术点与业务场景的深度结合


场景背景

在一家互联网大厂的Java求职面试中,面试官老王十分严肃,而面试者谢飞机则有些紧张。以下是他们之间的对话,问题围绕着核心技术栈展开,场景涉及共享经济与支付服务。


面试对话

第一轮:基础技术与业务结合

老王:谢先生,您好!我们公司在共享经济场景中,需要优化订单系统的高性能访问。你能说说在Java中如何进行线程池优化吗?

谢飞机 :嗯......线程池优化啊......可以用ThreadPoolExecutor,然后调整核心线程数和最大线程数,比如可以设置大一点,这样就能多处理任务了。

老王 :(微笑)嗯,方向是对的,但要注意任务队列的选择,比如LinkedBlockingQueueSynchronousQueue的区别,后面可以再深入了解。

老王:接下来,问你一个数据库优化问题。我们订单表数据量很大,涉及到频繁查询,你会用什么技术或者框架来提升查询性能?

谢飞机:这个嘛......可以用MyBatis,还可以加缓存,比如Redis,嗯......然后加个索引。

老王:回答的方向不错,但要记住索引分为主键索引和联合索引,缓存要注意淘汰机制。

老王:最后一个问题,订单系统需要支持分布式事务,你熟悉哪些方案?

谢飞机:分布式事务......好像可以用Spring Cloud的那个,叫什么来着......嗯,Seata?对对,用Seata。

老王:不错,Seata确实是一个很好的选择,不过要注意TCC和AT模式的区别。


第二轮:微服务与安全

老王:接下来,我们需要设计一个支付系统的微服务架构。你觉得微服务间通信应该如何设计?

谢飞机:用Restful API啊,然后......还可以用RPC,比如gRPC?

老王:嗯,gRPC是个不错的选择,性能优于HTTP REST,但要注意序列化工具的选型,比如Protobuf。

老王:那支付系统的用户认证和授权,你有什么方案?

谢飞机:这个......可以用JWT,然后......再加个Spring Security?

老王:(点头)对,JWT和Spring Security是常用组合,不过需要注意Token的过期策略和刷新机制。

老王:支付系统的日志监控怎么设计,才能快速定位问题?

谢飞机:日志......用Logback打日志,然后接入ELK?

老王:不错,ELK是常见方案,但也可以考虑接入Kibana和Grafana做实时监控。


第三轮:高并发与性能优化

老王:支付高峰期,系统需要承载每秒10万笔订单的写入。你能谈谈如何设计高并发写入方案吗?

谢飞机:嗯......可以用Redis做队列,把订单先存进去,慢慢写数据库?

老王:方向对了,但还可以加上分库分表,同时使用消息队列如Kafka做异步处理。

老王:那订单系统的接口超时了,你会怎么处理?

谢飞机:超时......可以重试?加个超时设置?

老王:没错,但要注意重试机制的幂等性,以及使用Resilience4j做限流和熔断。

老王:最后一个问题,用户反馈支付成功有延迟,你会如何排查问题?

谢飞机:延迟......先看日志,然后用那个啊,Jaeger?

老王:(满意)不错,Jaeger可以做分布式链路追踪,但要注意节点间的调用链完整性。


面试总结

老王:谢先生,今天的面试到这里结束了,回去等通知吧!建议你再多研究下分布式事务和高并发的优化方案,祝你好运!


技术点解析与总结

线程池优化

线程池优化需根据任务特点选择合适的任务队列和线程数。常见的队列有:

  • LinkedBlockingQueue: 适合无界队列。
  • SynchronousQueue: 不存储任务,直接交给线程处理。
数据库优化
  • 索引:创建合理的主键和联合索引。
  • 缓存:使用Redis等缓存技术,注意数据一致性问题。
  • 分库分表:对大表进行垂直或水平拆分。
分布式事务

常见方案:

  • Seata: 提供AT、TCC模式。
  • 消息队列: 通过最终一致性实现事务。
  • 数据库XA事务: 基于两阶段提交。
微服务通信
  • RESTful API: 简单易用。
  • gRPC: 高性能,基于Protobuf序列化。
安全机制
  • JWT: 轻量级Token认证。
  • Spring Security: 提供全面的安全解决方案。
日志与监控
  • ELK Stack: Elasticsearch、Logstash、Kibana。
  • 分布式追踪: 使用Jaeger或Zipkin。
高并发设计
  • Redis队列: 提高写入性能。
  • 分库分表: 支撑海量数据写入。
  • 限流与熔断: 使用Resilience4j。

标签

Java面试,线程池优化,分布式事务,微服务架构,高并发设计


相关推荐
梦想总是可以实现的1 天前
SpringCloud2024 + JDK17实战:手把手教你从零搭建微服务全家桶(含Eureka+Gateway+Redis)
springcloud·微服务架构·java开发·分布式系统
小陈Coding7 天前
互联网大厂Java面试实录:电商音视频内容社区场景深度解析
aigc·音视频·java面试·电商·技术面试·互联网大厂·内容社区
蛐蛐蜉蝣耶9 天前
互联网大厂Java面试实录:当严肃面试官遇上搞笑程序员谢飞机
spring boot·微服务·java面试·电商系统·分布式系统·技术面试·程序员面试
蛐蛐蜉蝣耶10 天前
互联网大厂Java面试实录:严肃面试官vs搞笑水货程序员的3轮技术对决
spring boot·微服务·高并发·java面试·电商系统·java开发·面试技巧
蛐蛐蜉蝣耶10 天前
互联网大厂Java面试实录:严肃面试官VS搞笑水货程序员谢飞机的技术对决
spring boot·微服务·java面试·电商系统·java开发·技术面试·程序员面试
蛐蛐蜉蝣耶10 天前
互联网大厂Java面试实录:严肃面试官VS水货程序员谢飞机的爆笑对决
spring boot·微服务·高并发·java面试·电商系统·分布式系统·面试技巧
编程彩机11 天前
互联网大厂Java面试:从Spring Cloud到分布式事务的技术场景探索
java·spring cloud·分布式事务·微服务架构·技术面试
JustMove0n11 天前
互联网大厂Java面试:从Spring Boot到微服务的技术探索
java·spring boot·微服务·性能优化·消息队列·分布式事务·技术面试