线性规划

潮汐退涨月冷风霜2 个月前
开发语言·python·线性规划·数学规划
利用python处理线性规划问题导入模块函数功能 Linear programming: minimize a linear objective function subject to linear equality and inequality constraints. 处理线性规划问题,在等式和不等式约束下最小化目标函数
liangbm32 个月前
笔记·python·数学建模·matlab·线性规划·整数规划·0-1规划
数学建模笔记—— 整数规划和0-1规划在规划问题中,有些最优解可能是分数或小数,但对于某些具体问题,常要求某些变量(全部或部分)的解必须是整数。例如,当变量代表的是机器的台数,工作的人数或装货的车数等。为了满足整数的要求,初看起来似乎只要把已得的非整数解舍入化整就可以了。实际上化整后的数不见得是可行解和最优解,所以应该有特殊的方法来求解整数规划。在整数规划中,如果所有变量都限制为整数,则称为纯整数规划;如果仅一部分变量限制为整数,则称为混合整数规划。整数规划的一种特殊情形是0-1规划,它的变数仅限于0或1。
liangbm32 个月前
笔记·数学建模·matlab·开源·线性规划·博弈论·最大最小化
数学建模笔记—— 最大最小化规划模型在博弈论中有一个经典理论一一最大最小策略( Minimax strategy),是由博弈论奠基人约翰·冯·诺伊曼(John von Neumann)在1928年提出的一种在理性行为基础上做的保守博弈策略:使得博弈者的最小收入最大化的策略。由此衍生出了最大最小算法(Minimax算法),是一种找出失败的最大可能性中的最小值的算法(即最小化对手的最大得益)。在实际问题中也有许多求最大值的最小化问题, 例如急救中心选址问题就是要规划其到所有地点最大距离的最小值,在投资规划中要确定最大风险的最低限度等,为此,对每
theskylife3 个月前
大数据·python·算法·数据分析·线性规划
利用Python实现供应链管理中的线性规划与资源优化——手机生产计划1在全球供应链日益复杂的背景下,企业不仅需要优化生产流程,还必须在多变的市场环境中做出迅速而精准的决策。随着数据分析技术的发展,Python正在成为生产管理领域的重要工具之一。通过线性规划,企业能够在考虑多种原材料限制、交付时间、物流成本等多个因素的情况下,制定出最优的生产与配送方案,从而最大化资源利用率,降低运营成本。本文将带您深入探讨如何利用Python进行这种多因素优化,帮助企业在激烈的竞争中占据有利位置。
theskylife3 个月前
python·数据挖掘·数据分析·线性规划·规范性分析
利用Python实现供应链管理中的线性规划与资源优化——手机生产计划2:利润最大化在上篇文章中,我们探讨了如何利用生产约束条件实现成本的最小化,这为优化运营奠定了基础。然而,现实世界中的商业环境往往充满变数,单一的成本控制策略可能无法满足复杂的盈利需求。在本篇文章中,我们将深入剖析如何在多重挑战下实现利润的最大化。我们将探讨先进的利润优化策略,挖掘隐藏的盈利机会,并提供实际操作的最佳实践,帮助你在竞争激烈的市场中取得最终的成功。
bujbujbiu4 个月前
线性规划·运筹学·对偶理论·对偶单纯形法
Operations Research课程之线性规划对偶(对偶理论|影子价格|单纯形法|对偶单纯形法)目录1.对偶问题1.1 原始和对偶1.1.1 确定对偶形式1.1.2 对偶约束符号1.1.2 对偶变量符号
温柔说给风5 个月前
开发语言·数学建模·matlab·最优化方法·线性规划·最小二乘法·非线性方程
【最优化方法】实验一 熟悉MATLAB基本功能实验一  熟悉MATLAB基本功能实验的目的和要求:在本次实验中,通过亲临使用MATLAB,对该软件做一全面了解并掌握重点内容。
WangLi&a10 个月前
图论·线性规划·最短路径·差分约束·差额限制
差分约束算法差分约束系统包含 m m m个涉及 n n n个变量的差额限制条件,这些差额限制条件每个都是形式为 x i − x j ≤ b ∈ [ 1 , m ] x_i-x_j\leq b_{\in[1,m]} xi−xj≤b∈[1,m]的简单线性不等式。
魔法自动机1 年前
算法·数学建模·matlab·线性规划·研究生·优化模型
数学建模| 线性规划(Matlab)线性规划:约束条件和目标函数都是线性的。简单点说,所有的决策变量在目标函数和约束条件中都是一次方。Matlab函数:
魔法自动机1 年前
算法·数学建模·matlab·线性规划
数学建模| 非线性规划(Matlab)非线性规划:约束条件和目标函数存在非线性函数。简单点说,约束条件和目标函数中至少一个决策变量不是一次方,例如三角函数、对数、多次方等。
我在开水团做运筹1 年前
运筹优化·线性规划·对偶问题
线性规划对偶问题:理论推导和实际应用之前在很多地方,都看到过“对偶”这两个字眼,总觉得这个词很高大上。对偶理论的百度百科中甚至写到:“在线性规划早期发展中最重要的发现是对偶问题”。所以,既然已经到了线性规划这里,那对偶问题自然也值得深入学习一下。
配电网和matlab1 年前
线性代数·matlab·线性规划·yalmip
Yalmip使用教程(6)-将约束条件写成矩阵形式博客中所有内容均来源于自己学习过程中积累的经验以及对yalmip官方文档的翻译:https://yalmip.github.io/tutorials/
配电网和matlab1 年前
matlab·线性规划·yalmip·使用教程
Yalmip入门教程(5)-约束条件操作的相关函数博客中所有内容均来源于自己学习过程中积累的经验以及对yalmip官方文档的翻译:https://yalmip.github.io/tutorials/
我在开水团做运筹1 年前
运筹优化·单纯形法·线性规划
线性规划和单纯形法-原理篇很多运筹学的教材都是从线性规划开始的,我平时做算法策略的落地应用时也研发了一部分基于线性规划的技术方案。可以说,如果搞不懂线性规划,很难成为一名优秀的运筹优化算法工程师。