HDFS与MapResource笔记

客户端向NN请求上传文件

NN回应可以上传

请求上传块,返回DN

所以后面就比较慢

找最近的服务器进行

64K发到1节点,1节点立刻发给2节点,同时1节点自动开始落盘,这里,3个节点是同时落盘的. 因为缓存是在内存中,而持久化是将数据存到磁盘上.

副本节点选择:

1.安全:放不同机架

2.速率:放同一机架

结合后,机架1放1台 机架2放2台

确保当只需要2台时,有一台在机架2上

客户端是并行读取,但是落盘是顺序落盘的(注意这里是没有隐藏序列号的)

NN 内存和磁盘都有,

一个新文件来保存元数据的变更记录

放入内存中

fsimage元数据

edit 记录

不明白!!!

100W条数据,或者1小时到达,2NN要合并了,Edits会不会停止?

方式: 产生一个最新的空的日志,让2NN把旧的拿走

流程:

1.NN启动 : 加载元数据和日志到内存

2.客户端请求操作

  1. NN更新操作日志

注意元数据是不修改的 修改的只是日志

但是,元数据和修改日志,是一对一的

  1. NN进行操作

  2. 到达条件 滚动

  3. 2NN拿走回滚文件, 更新元数据,加载到内存,

  4. 2NN将新的元数据发送给NN,NN更新元数据

数据块 一个数据块带一个meta文件,meta文件就是数据块的描述信息(数据长度 校验和 时间戳)

注意 当NN启动并且加载到内存后,还不能开,必须先将DN向NN注册,同时上报,以后每6小时都上报所有块信息.

这些操作都是在内存中完成的

这时候内存中: fsi edits 元数据目录 这才是整体NN

NN会监控DN,每三秒连接一次.

三秒未连接会触发超时处理,10分钟+30秒未连接,节点G

MapReduce(已经被淘汰了)

优点:

  • 易编程
  • 高扩展性:直接 加机器
  • 高容错:机器挂了,可以转移到另一个节点 默认可以重试4次
  • 适合PB级以上数据的离线处理: 不方便处理流式数据

分与合

分:按照128M分

合: 按照需求分区

ReduceTask数量取决于分区数量

都是KV的格式

相关推荐
九成宫7 分钟前
计算机网络期末复习——第1章:计算机网络和因特网
笔记·计算机网络·软件工程
我的golang之路果然有问题7 分钟前
mysql 个人笔记导出之-数据库时间戳问题以及增删改查
数据库·笔记·学习·mysql·分享·个人笔记
JH307317 分钟前
我的笔记:怎么用 MySQL 的 EXPLAIN 来分析 SQL
笔记·sql·mysql
Justice Young32 分钟前
Sqoop复习笔记
hadoop·笔记·sqoop
深蓝海拓1 小时前
PySide6从0开始学习的笔记(二十三)使用QRunnable在线程池中执行临时任务
笔记·python·qt·学习·pyqt
三档程序员1 小时前
适配龙芯笔记之 libthriftnb.so 链接libevent失败
笔记
声网1 小时前
如何用 Fun-ASR-Nano 微调一个「听懂行话」的语音模型?丨Voice Agent 学习笔记
笔记·学习·xcode
大厂技术总监下海1 小时前
从Hadoop MapReduce到Apache Spark:一场由“磁盘”到“内存”的速度与范式革命
大数据·hadoop·spark·开源
m0_613607011 小时前
小土堆- P5-笔记
pytorch·笔记·深度学习
Yu_Lijing2 小时前
基于C++的《Head First设计模式》笔记——工厂模式
c++·笔记·设计模式