使用python中的SVM进行数据回归预测

在Python中使用支持向量机(SVM)进行数据回归预测,你可以遵循以下步骤:

  1. 导入必要的库:
python 复制代码
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
  1. 准备数据集:

    你需要准备你的特征矩阵X和目标变量向量y。确保X和y的维度匹配。

  2. 拆分数据集:

    将数据集划分为训练集和测试集,一个常见的比例是将数据的70%用于训练,30%用于测试:

python 复制代码
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
  1. 创建并拟合模型:
    创建SVM回归模型,并使用训练集进行拟合:
python 复制代码
regressor = SVR(kernel='rbf')
regressor.fit(X_train, y_train)

这里的kernel参数指定了核函数的类型,rbf表示径向基核函数,你也可以根据需要选择其他核函数。

  1. 进行预测:
    使用测试集数据进行预测:
python 复制代码
y_pred = regressor.predict(X_test)
  1. 评估模型:
    通过计算均方误差(Mean Squared Error, MSE)或其他适当的指标来评估模型的性能:
python 复制代码
mse = mean_squared_error(y_test, y_pred)

这样,你就可以使用支持向量机(SVM)模型进行数据回归预测了。记得根据实际问题对SVM的参数进行调优,例如调整核函数类型、正则化参数等。

相关推荐
List<String> error_P4 分钟前
Python蓝桥杯常考知识点-模拟
开发语言·python·蓝桥杯
比奇堡鱼贩20 分钟前
python第五次作业
开发语言·前端·python
码农小韩1 小时前
AIAgent应用开发——DeepSeek分析(二)
人工智能·python·深度学习·agent·强化学习·deepseek
喵手2 小时前
Python爬虫实战:构建一个高健壮性的图书数据采集器!
爬虫·python·爬虫实战·零基础python爬虫教学·构建图书数据·采集图书数据·图书数据采集
张3蜂3 小时前
Python venv 详解:为什么要用、怎么用、怎么用好
开发语言·python
老赵全栈实战3 小时前
《从零搭建RAG系统第3天:文档加载+文本向量化+向量存入Milvus》
python
火龙果研究院3 小时前
在CentOS上安装Python 3.13需要从源码编译
开发语言·python·centos
龙山云仓3 小时前
No156:AI中国故事-对话司马迁——史家绝唱与AI记忆:时间叙事与因果之链
大数据·开发语言·人工智能·python·机器学习
niuniudengdeng3 小时前
一种基于高维物理张量与XRF实景复刻的一步闭式解工业级3D打印品生成模型
人工智能·python·数学·算法·3d
overmind4 小时前
oeasy Python 114 在列表指定位置插入insert
开发语言·python