使用python中的SVM进行数据回归预测

在Python中使用支持向量机(SVM)进行数据回归预测,你可以遵循以下步骤:

  1. 导入必要的库:
python 复制代码
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
  1. 准备数据集:

    你需要准备你的特征矩阵X和目标变量向量y。确保X和y的维度匹配。

  2. 拆分数据集:

    将数据集划分为训练集和测试集,一个常见的比例是将数据的70%用于训练,30%用于测试:

python 复制代码
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
  1. 创建并拟合模型:
    创建SVM回归模型,并使用训练集进行拟合:
python 复制代码
regressor = SVR(kernel='rbf')
regressor.fit(X_train, y_train)

这里的kernel参数指定了核函数的类型,rbf表示径向基核函数,你也可以根据需要选择其他核函数。

  1. 进行预测:
    使用测试集数据进行预测:
python 复制代码
y_pred = regressor.predict(X_test)
  1. 评估模型:
    通过计算均方误差(Mean Squared Error, MSE)或其他适当的指标来评估模型的性能:
python 复制代码
mse = mean_squared_error(y_test, y_pred)

这样,你就可以使用支持向量机(SVM)模型进行数据回归预测了。记得根据实际问题对SVM的参数进行调优,例如调整核函数类型、正则化参数等。

相关推荐
青瓷程序设计1 分钟前
水果识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
*才华有限公司*39 分钟前
基于BERT的文本分类模型训练全流程:从环境搭建到显存优化实战
python
Lxinccode2 小时前
python(59) : 多线程调用大模型ocr提取图片文本
开发语言·python·图片提取文字·批量提取文件·多线程ocr
梁辰兴2 小时前
PyCharm使用了Conda的虚拟环境创建的的Python项目,下载库(包)到该项目的虚拟环境中
python·pycharm·conda·错误·异常·异常报错
自由日记2 小时前
python简单线性回归
开发语言·python·线性回归
Halo_tjn2 小时前
Set集合专项实验
java·开发语言·前端·python
vvoennvv3 小时前
【Python TensorFlow】 BiTCN-LSTM双向时间序列卷积长短期记忆神经网络时序预测算法(附代码)
python·神经网络·tensorflow·lstm·tcn
q***42053 小时前
python的sql解析库-sqlparse
数据库·python·sql
AI浩4 小时前
回归基础:让去噪生成模型真正去噪
人工智能·数据挖掘·回归
大数据追光猿4 小时前
LangChain / LangGraph / AutoGPT / CrewAI / AutoGen 五大框架对比
经验分享·笔记·python·langchain·agent