【自动驾驶汽车量子群粒子过滤器】用于无人驾驶汽车列车定位的量子粒子滤波研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码实现](#🌈4 Matlab代码实现)


💥1 概述

对于无人驾驶汽车的列车定位问题,量子粒子滤波(Quantum Particle Filter)是基于量子理论和粒子滤波方法的一种新型定位算法。它使用量子粒子来近似表示目标状态的概率分布,并通过观测数据进行权重更新和重采样,实现对无人驾驶汽车位置的准确估计。

虽然目前关于量子粒子滤波在无人驾驶汽车列车定位方面的研究还比较有限,但以下是一篇相关的研究论文可以提供一些参考:

Liang, H., Li, K., Hao, Y., & Xiao, M. (2020). Quantum-Inspired Particle Filter for Train Localization in Unmanned Vehicle. IEEE Transactions on Intelligent Transportation Systems, 21(6), 2545-2555.

这篇论文提出了一种基于量子粒子滤波的方法,用于无人驾驶汽车列车的定位问题。研究人员将量子理论引入粒子滤波器中,通过定义量子粒子的状态和量子测量操作,实现对车辆位置的估计。研究结果表明,这种基于量子粒子滤波的定位方法在无人驾驶汽车列车定位中具有较高的精度和鲁棒性。

请注意,该领域的研究还处于初级阶段,因此可能还没有太多的中文文献可供参考。如果需要更全面的资料,建议查阅相关国际期刊和会议论文,以获取更多关于量子粒子滤波在无人驾驶汽车列车定位方面的研究信息。

本文量子或基线粒子的中心可以在黎曼-罗巴切夫斯基或欧几里得空间中计算。利用分数母能量透视计算左右量子自旋粒子在2D表面上的运动中心,用于无人车控制,可扩展到3D或更高维空间。

📚 2 运行结果

部分代码:

figure(2);

set(gca,'FontSize',12);

clf;

hold on

plot(X(1, k), X(2, k), 'r.', 'markersize',50); % System status

axis([0 100 0 100]);

plot(P(1, :), P(2, :), 'k.', 'markersize',5); % Particle position

plot(PCenter(1, k), PCenter(2, k), 'b.', 'markersize',25); % Center

legend('True State', 'Particle', 'Center of Particles');

xlabel('x', 'FontSize', 20); ylabel('y', 'FontSize', 20);

title('Real Gaussian Errors');

grid;

hold off

pause(0.5);

end

%% 1.5 dimension quantum space

P = P_init; % Particle starts off

% Jumps now

for k = 2 : T

% Prediction

for i = 1 : N

P(:, i) = P(:, i) + distance * [-cos(k * theta); sin(k * theta)] + wgn(2, 1, 10*log10(Q));

end

% Find the center,direction of moving

center = sum(P, 2) / N; % Center of particle

path = Z(:, k) - Z(:, k-1); % Vector of path

pathAngle = atan2(path(2, 1), path(1, 1)); % Direction of moving

% Initialization of extra parameters

PLeft = zeros(2, N); % Left party members

PRight = zeros(2, N); % Right party members

WLeft = zeros(N, 1); % Weight of left

WRight = zeros(N, 1); % Weight of right

ILeft = 1;

IRight = 1;

% Particles are divided into either of left spin party or right spin party

for i = 1 : N

% Space transformation, driver's moving view, counter-clock wise,0~2pi

path = P(:, i) - center;

partiAngle = atan2(path(2, 1), path(1, 1)); % Angle towards the particle center

wAngle = mod(partiAngle - pathAngle + 2*pi, 2*pi);

% 0~pi belongs to left pi~2*pi belongs to right

if wAngle > 0 && wAngle <= pi

PLeft(:, ILeft) = P(:, i);

dist = norm(PLeft(:, ILeft)-Z(:, k)); % Left distance to the observer

WLeft(ILeft) = (1 / sqrt(R) / sqrt(2 * pi)) * exp(-(dist)^1.5 / 1.5 / R); % Left quantum weight

ILeft = ILeft + 1;

else

PRight(:, IRight) = P(:, i);

dist = norm(PRight(:, IRight)-Z(:, k)); % Right distance to the observer

WRight(IRight) = (1 / sqrt(R) / sqrt(2 * pi)) * exp(-(dist)^1.5 / 1.5 / R); % Right quantum weight

IRight = IRight + 1;

end

end

CLeft = ILeft - 1;

CRight = IRight - 1;

% Left spin normalization

wsum = sum(WLeft);

for i = 1 : CLeft

WLeft(i) = WLeft(i) / wsum;

end

% Left resampling

for i = 1 : CLeft

wmax = 2 * max(WLeft) * rand; % Use the same rule as baseline

index = randi(CLeft, 1);

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

1\]Liang, H., Li, K., Hao, Y., \& Xiao, M. (2020). Quantum-Inspired Particle Filter for Train Localization in Unmanned Vehicle. IEEE Transactions on Intelligent Transportation Systems, 21(6), 2545-2555. ## [🌈](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=Mzk0MDMzNzYwOA==&action=getalbum&album_id=2591810113208958977#wechat_redirect "🌈")****4 Matlab代码实现****

相关推荐
ghie90901 小时前
基于MATLAB GUI的伏安法测电阻实现方案
开发语言·matlab·电阻
leo__5203 小时前
基于菲涅耳衍射积分的空心高斯光束传输数值模拟(MATLAB实现)
开发语言·matlab
byzh_rc4 小时前
[认知计算] 专栏总结
线性代数·算法·matlab·信号处理
listhi5204 小时前
对LeNet-5的matlab实现,识别MINST手写数字集
开发语言·matlab
FL171713146 小时前
MATLAB的Sensitivity Analyzer
开发语言·matlab
汽车仪器仪表相关领域7 小时前
工况模拟精准检测,合规减排赋能行业 ——NHASM-1 型稳态工况法汽车排气检测系统项目实战经验分享
数据库·算法·单元测试·汽车·压力测试·可用性测试
小烤箱7 小时前
Autoware Universe 感知模块详解 | 第十一节:检测管线的通用工程模板与拆解思路导引
人工智能·机器人·自动驾驶·autoware·感知算法
线束线缆组件品替网9 小时前
Amphenol LTW 防水线缆 IP67/IP68 结构解析
运维·网络·人工智能·汽车·硬件工程·材料工程
rit843249911 小时前
基于高斯混合模型(GMM)的语音识别系统:MATLAB实现与核心原理
人工智能·matlab·语音识别
容智信息11 小时前
Hyper Agent:企业级Agentic架构怎么实现?
人工智能·信息可视化·自然语言处理·架构·自动驾驶·智慧城市