【机器学习】基于卷积神经网络 CNN 的猫狗分类问题


文章目录

  • 一、卷积神经网络的介绍
    • [1.1 什么是卷积神经网络](#1.1 什么是卷积神经网络)
    • [1.2 重要层的说明](#1.2 重要层的说明)
    • [1.3 应用领域](#1.3 应用领域)
    • [二、 软件、环境配置](#二、 软件、环境配置)
    • [2.1 安装Anaconda](#2.1 安装Anaconda)
    • [2.2 环境准备](#2.2 环境准备)
  • 三、猫狗分类示例
    • [3.1 图像数据预处理](#3.1 图像数据预处理)
    • [3.2 基准模型](#3.2 基准模型)
    • [3.3 数据增强](#3.3 数据增强)
    • [3.4 dropout层](#3.4 dropout层)
    • 四、总结

一、卷积神经网络的介绍

1.1 什么是卷积神经网络

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。

顾名思义,就是将卷积与前馈神经网络结合,所衍生出来的一种深度学习算法。

卷积神经网络CNN的结构图

1.2 重要层的说明

上面图中是33的卷积核(卷积核一般采用33和2*2 )与上一层的结果(输入层)进行卷积的过程

②池化层

最大池化,它只是输出在区域中观察到的最大输入值

均值池化,它只是输出在区域中观察到的平均输入值

两者最大区别在于卷积核的不同(池化是一种特殊的卷积过程)

③全连接层

全连接过程,跟神经网络一样,就是每个神经元与上一层的所有神经元相连

输出层:

卷积神经网络中输出层的上游通常是全连接层,因此其结构和工作原理与传统前馈神经网络中的输出层相同。

对于图像分类问题,输出层使用逻辑函数或归一化指数函数(softmax function)输出分类标签。

在物体识别(object detection)问题中,输出层可设计为输出物体的中心坐标、大小和分类。

在图像语义分割中,输出层直接输出每个像素的分类结果。

1.3 应用领域

  • 计算机视觉
    图像识别
    物体识别
    行为认知
    姿态估计
    神经风格迁移
  • 自然语言处理
  • 其它
    物理学
    遥感科学
    大气科学
    卷积神经网络在计算机视觉识别上的全过程,如下图所示:

二、 软件、环境配置

2.1 安装Anaconda

参考:https://blog.csdn.net/ssj925319/article/details/114947425

2.2 环境准备

  • 打开 cmd 命令终端,创建虚拟环境。
c 复制代码
conda create -n tf1 python=3.6
  • 激活环境:
c 复制代码
activate
conda activate tf1
  • 安装 tensorflow、keras 库。
  • 在新建的虚拟环境 tf1 内,使用以下命令安装两个库:
c 复制代码
pip install tensorflow==1.14.0 -i "https://pypi.doubanio.com/simple/"
pip install keras==2.2.5 -i "https://pypi.doubanio.com/simple/"
  • 安装 nb_conda_kernels 包。
c 复制代码
conda install nb_conda_kernels
  • 重新打开 Jupyter Notebook(tf1)环境下的。
  • 点击【New】→【Python[tf1环境下的]】创建 python 文件。

三、猫狗分类示例

3.1 图像数据预处理

对猫狗图像进行分类,代码如下:

c 复制代码
import os, shutil 
# 原始目录所在的路径
original_dataset_dir = 'E:\\Cat_And_Dog\\train\\'

# 数据集分类后的目录
base_dir = 'E:\\Cat_And_Dog\\train1'
os.mkdir(base_dir)

# # 训练、验证、测试数据集的目录
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)

# 猫训练图片所在目录
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir)

# 狗训练图片所在目录
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir)

# 猫验证图片所在目录
validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir)

# 狗验证数据集所在目录
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir)

# 猫测试数据集所在目录
test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir)

# 狗测试数据集所在目录
test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir)

# 将前1000张猫图像复制到train_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_cats_dir, fname)
    shutil.copyfile(src, dst)

# 将下500张猫图像复制到validation_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_cats_dir, fname)
    shutil.copyfile(src, dst)
    
# 将下500张猫图像复制到test_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_cats_dir, fname)
    shutil.copyfile(src, dst)
    
# 将前1000张狗图像复制到train_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_dogs_dir, fname)
    shutil.copyfile(src, dst)
    
# 将下500张狗图像复制到validation_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_dogs_dir, fname)
    shutil.copyfile(src, dst)
    
# 将下500张狗图像复制到test_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_dogs_dir, fname)
    shutil.copyfile(src, dst)

分类后如下图所示:

查看分类后,对应目录下的图片数量:

c 复制代码
#输出数据集对应目录下图片数量
print('total training cat images:', len(os.listdir(train_cats_dir)))
print('total training dog images:', len(os.listdir(train_dogs_dir)))
print('total validation cat images:', len(os.listdir(validation_cats_dir)))
print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
print('total test cat images:', len(os.listdir(test_cats_dir)))
print('total test dog images:', len(os.listdir(test_dogs_dir)))

猫狗训练图片各 1000 张,验证图片各 500 张,测试图片各 500 张。

3.2 基准模型

第①步:构建网络模型:

c 复制代码
#网络模型构建
from keras import layers
from keras import models
#keras的序贯模型
model = models.Sequential()
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(32, (3, 3), activation='relu',
                        input_shape=(150, 150, 3)))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核2*2,激活函数relu
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#flatten层,用于将多维的输入一维化,用于卷积层和全连接层的过渡
model.add(layers.Flatten())
#全连接,激活函数relu
model.add(layers.Dense(512, activation='relu'))
#全连接,激活函数sigmoid
model.add(layers.Dense(1, activation='sigmoid'))

查看模型各层的参数状况:

c 复制代码
#输出模型各层的参数状况
model.summary()

结果如下:

第②步:配置优化器:

loss:计算损失,这里用的是交叉熵损失

metrics:列表,包含评估模型在训练和测试时的性能的指标

c 复制代码
from keras import optimizers

model.compile(loss='binary_crossentropy',
              optimizer=optimizers.RMSprop(lr=1e-4),
              metrics=['acc'])

第③步:图片格式转化

所有图片(2000张)重设尺寸大小为 150x150 大小,并使用 ImageDataGenerator 工具将本地图片 .jpg 格式转化成 RGB 像素网格,再转化成浮点张量上传到网络上。

c 复制代码
from keras.preprocessing.image import ImageDataGenerator

# 所有图像将按1/255重新缩放
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        # 这是目标目录
        train_dir,
        # 所有图像将调整为150x150
        target_size=(150, 150),
        batch_size=20,
        # 因为我们使用二元交叉熵损失,我们需要二元标签
        class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=20,
        class_mode='binary')

输出结果:

查看上述图像预处理过程中生成器的输出,

c 复制代码
#查看上面对于图片预处理的处理结果
for data_batch, labels_batch in train_generator:
    print('data batch shape:', data_batch.shape)
    print('labels batch shape:', labels_batch.shape)
    break

如果出现错误:ImportError: Could not import PIL.Image. The use of load_img requires PIL,是因为没有安装 pillow 库导致的,使用如下命令在 tf1 虚拟环境中安装:

c 复制代码
pip install pillow -i "https://pypi.doubanio.com/simple/"

安装完毕后,关闭 Jupyter Notebook 重新打开,重新运行一遍程序即可。

输出结果如下:

第④步:开始训练模型。

c 复制代码
#模型训练过程
history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=30,
      validation_data=validation_generator,
      validation_steps=50)

电脑性能越好,它训练得越快。

第⑤步:保存模型。

c 复制代码
#保存训练得到的的模型
model.save('G:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small_1.h5')

第⑥步:结果可视化(需要在 tf1 虚拟环境中安装 matplotlib 库,命令:pip install matplotlib -i "https://pypi.doubanio.com/simple/")。

c 复制代码
#对于模型进行评估,查看预测的准确性
import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(len(acc))

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

训练结果如上图所示,很明显模型上来就过拟合了,主要原因是数据不够,或者说相对于数据量,模型过复杂(训练损失在第30个epoch就降为0了),训练精度随着时间线性增长,直到接近100%,而我们的验证精度停留在70-72%。我们的验证损失在5个epoch后达到最小,然后停止,而训练损失继续线性下降,直到接近0。

这里先解释下什么是过拟合?

过拟合的定义: 给定一个假设空间 H HH,一个假设 h hh 属于 H HH,如果存在其他的假设 h ' h'h' 属于 H HH,使得在训练样例上 h hh 的错误率比 h ' h'h' 小,但在整个实例分布上 h ' h'h' 比 h hh 的错误率小,那么就说假设 h hh 过度拟合训练数据。

举个简单的例子,( a )( b )过拟合,( c )( d )不过拟合,如下图所示:

过拟合常见解决方法:

(1)在神经网络模型中,可使用权值衰减的方法,即每次迭代过程中以某个小因子降低每个权值。

(2)选取合适的停止训练标准,使对机器的训练在合适的程度;

(3)保留验证数据集,对训练成果进行验证;

(4)获取额外数据进行交叉验证;

(5)正则化,即在进行目标函数或代价函数优化时,在目标函数或代价函数后面加上一个正则项,一般有L1正则与L2正则等。

不过接下来将使用一种新的方法,专门针对计算机视觉,在深度学习模型处理图像时几乎普遍使用------数据增强。

3.3 数据增强

数据集增强主要是为了减少网络的过拟合现象,通过对训练图片进行变换可以得到泛化能力更强的网络,更好的适应应用场景。

重新构建模型:

上面建完的模型就保留着,我们重新建一个 .ipynb 文件,重新开始建模。

首先猫狗图像预处理,只不过这里将分类好的数据集放在 train2 文件夹中,其它的都一样。

然后配置网络模型、构建优化器,然后进行数据增强,代码如下:

图像数据生成器增强数据:

c 复制代码
from keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')

查看数据增强后的效果:

c 复制代码
import matplotlib.pyplot as plt
# This is module with image preprocessing utilities
from keras.preprocessing import image
fnames = [os.path.join(train_cats_dir, fname) for fname in os.listdir(train_cats_dir)]
# We pick one image to "augment"
img_path = fnames[3]
# Read the image and resize it
img = image.load_img(img_path, target_size=(150, 150))
# Convert it to a Numpy array with shape (150, 150, 3)
x = image.img_to_array(img)
# Reshape it to (1, 150, 150, 3)
x = x.reshape((1,) + x.shape)
# The .flow() command below generates batches of randomly transformed images.
# It will loop indefinitely, so we need to `break` the loop at some point!
i = 0
for batch in datagen.flow(x, batch_size=1):
    plt.figure(i)
    imgplot = plt.imshow(image.array_to_img(batch[0]))
    i += 1
    if i % 4 == 0:
        break
plt.show()

结果如下(共4张,这里只截取了三张):

图片格式转化。

c 复制代码
train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,)
# Note that the validation data should not be augmented!
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
        # This is the target directory
        train_dir,
        # All images will be resized to 150x150
        target_size=(150, 150),
        batch_size=32,
        # Since we use binary_crossentropy loss, we need binary labels
        class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=32,
        class_mode='binary')

开始训练并保存结果。

c 复制代码
history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=100,
      validation_data=validation_generator,
      validation_steps=50)
model.save('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small_2.h5')

训练结果如下:

结果可视化:

c 复制代码
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()

如下图所示:

由于数据量的增加,对比基准模型,可以很明显的观察到曲线没有过度拟合了,训练曲线紧密地跟踪验证曲线,这也就是数据增强带来的影响,但是可以发现它的波动幅度还是比较大的。

下面在此数据增强的基础上,再增加一层 dropout 层,再来训练看看。

3.4 dropout层

什么是dropout层?

Dropout层在神经网络层当中是用来干嘛的呢?它是一种可以用于减少神经网络过拟合的结构,那么它具体是怎么实现的呢?

假设下图是我们用来训练的原始神经网络:

一共有四个输入 x i x_ix

i

,一个输出 y yy。Dropout 则是在每一个 batch 的训练当中随机减掉一些神经元,而作为编程者,我们可以设定每一层 dropout(将神经元去除的的多少)的概率,在设定之后,就可以得到第一个 batch 进行训练的结果:

从上图我们可以看到一些神经元之间断开了连接,因此它们被 dropout 了!dropout顾名思义就是被拿掉的意思,正因为我们在神经网络当中拿掉了一些神经元,所以才叫做 dropout 层。

具体实现:

在数据增强的基础上,再添加一个 dropout 层。

c 复制代码
#退出层
model.add(layers.Dropout(0.5))

如下图所示,仅在构建网络模型时添加一层即可,其余部分不变:

再次训练模型,查看训练结果如下:

相比于只使用数据增强的效果来看,额外添加一层 dropout 层,仔细对比,可以发现训练曲线更加紧密地跟踪验证曲线,波动的幅度也降低了些,训练效果更棒了。

四、总结

使用卷积神经网络(CNN)实现猫狗分类是一种有效的方法,它能够自动从图像中学习特征并进行分类,提高准确性。

参考链接:

https://blog.csdn.net/qq_43279579/article/details/117298169

https://blog.csdn.net/ssj925319/article/details/117787737

https://www.cnblogs.com/geeksongs/p/13446980.html

相关推荐
next_travel2 小时前
机器学习中的聚类
机器学习·聚类·sklearn
人生不如初见3 小时前
平台数据分类与聚类实验报告
人工智能·分类·数据挖掘·聚类
罔闻_spider5 小时前
爬虫prc技术----小红书爬取解决xs
爬虫·python·算法·机器学习·自然语言处理·中文分词
python机器学习ML5 小时前
机器学习K近邻算法——python详细代码解析(sklearn)(1)
python·机器学习·近邻算法·knn
weixin_514548895 小时前
机器学习课程学习周报十五
人工智能·学习·机器学习
FHYAAAX6 小时前
【机器学习】知识总结1(人工智能、机器学习、深度学习、贝叶斯、回归分析)
人工智能·深度学习·机器学习·贝叶斯·回归分析
人工智障调包侠6 小时前
基于深度学习多层感知机进行手机价格预测
人工智能·python·深度学习·机器学习·数据分析
本本的小橙子8 小时前
第十四周:机器学习
人工智能·机器学习
蛋先生DX8 小时前
网页也能跑大模型?
前端·机器学习·llm
学步_技术8 小时前
自动驾驶系列—自动驾驶背后的数据通道:通信总线技术详解与应用场景分析
人工智能·机器学习·自动驾驶·通信总线