TensorFlow模块简介

TensorFLow框架内构建了很多高层次的API,可以显著减少编写程序的代码量,其中包含众多网络结构相关函数和数据载入、数据处理的方法。

tf.data.Dataset

tf.data.Dataset是TensorFlow内置的数据输入模块,提供了专门用于数据输入的多种方法,可以高效地实现数据载入、数据增强和数据随机乱序等功能。例如,最简单的数据载入方法就是从列表中载入张量数据。

在虚拟环境的命令行中输入python,打开交互命令行,使用import tensorflow as tf 导入tensorFlow包,然后执行 tf.enable_eager_execution()方法开启TensorFlow的动态图模式,使用方法将列表[1,2,3]按第一个维度转换为张量Tensor,代码和运行结果如下图所示:

python 复制代码
import tensorflow as tf
tf.enable_eager_execution()
dataset=tf.data.Dataset.from_tensor_slices([1,2,3])
for element in dataset:
	print(element)

tf.layers

tf.layers是TensorFlow内置的构建神经网络的模块,在TensorFlow2.x中被移除,其中封装了很多底层的函数和基本的神经网络结构,在熟悉TensorFlow底层后可以直接使用tf.layers提供的高级API实现各种复杂的建模任务,能够省去大量的代码。

Keras

Keras库是最常用的TensorFlow高级核心API,隐藏了数据流和底层结构的很多细节,其库中具有大量可直接使用的神经网络结构和常用模块。Keras的代码完全由Python编写,在使用TensorFlow作为其后端时,较好地兼容了TensorFLow底层的各种库函数和核心模块。对于常见的神经网络层,Keras均实现了完美的封装,简单易用,特别适合初学者构建深度学习模型。

1、导入库

python 复制代码
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense,Dropout,Flatten,Conv2D,MaxPooling2D

2、序列构建神经网络模型

python 复制代码
#构建模型
model=Sequential()
#序列加入卷积层
model.add(Conv2D(...))
#序列加入池化层
model.add(MaxPooling2D(...))
#序列加入全连接层
model.add(Dense(...))
#序列加入随机失活
model.add(Dropout(...))
相关推荐
lqqjuly2 小时前
Lidar调试记录Ⅳ之Ubuntu22.04+ROS2+Livox_SDK2环境下编译Livox ROS Driver 2
人工智能·机器人·自动驾驶
qq_436962182 小时前
数据中台:打破企业数据孤岛,实现全域资产化的关键一步
数据库·人工智能·信息可视化·数据挖掘·数据分析
linuxxx1102 小时前
django测试缓存命令的解读
python·缓存·django
宇若-凉凉2 小时前
BERT 完整教程指南
人工智能·深度学习·bert
JD技术委员会3 小时前
如何在跨部门沟通失误后进行协调与澄清
人工智能
PcVue China3 小时前
PcVue X 工控——工厂数字化转型与落地巡回研讨会圆满举行
人工智能·软件工程·scada·监控平台·工控网
毕设源码-邱学长3 小时前
【开题答辩全过程】以 基于Python的Bilibili平台数据分析与可视化实现为例,包含答辩的问题和答案
开发语言·python·数据分析
StarPrayers.3 小时前
自蒸馏学习方法
人工智能·算法·学习方法
咚咚王者3 小时前
人工智能之编程进阶 Python高级:第十一章 过渡项目
开发语言·人工智能·python