TensorFlow模块简介

TensorFLow框架内构建了很多高层次的API,可以显著减少编写程序的代码量,其中包含众多网络结构相关函数和数据载入、数据处理的方法。

tf.data.Dataset

tf.data.Dataset是TensorFlow内置的数据输入模块,提供了专门用于数据输入的多种方法,可以高效地实现数据载入、数据增强和数据随机乱序等功能。例如,最简单的数据载入方法就是从列表中载入张量数据。

在虚拟环境的命令行中输入python,打开交互命令行,使用import tensorflow as tf 导入tensorFlow包,然后执行 tf.enable_eager_execution()方法开启TensorFlow的动态图模式,使用方法将列表[1,2,3]按第一个维度转换为张量Tensor,代码和运行结果如下图所示:

python 复制代码
import tensorflow as tf
tf.enable_eager_execution()
dataset=tf.data.Dataset.from_tensor_slices([1,2,3])
for element in dataset:
	print(element)

tf.layers

tf.layers是TensorFlow内置的构建神经网络的模块,在TensorFlow2.x中被移除,其中封装了很多底层的函数和基本的神经网络结构,在熟悉TensorFlow底层后可以直接使用tf.layers提供的高级API实现各种复杂的建模任务,能够省去大量的代码。

Keras

Keras库是最常用的TensorFlow高级核心API,隐藏了数据流和底层结构的很多细节,其库中具有大量可直接使用的神经网络结构和常用模块。Keras的代码完全由Python编写,在使用TensorFlow作为其后端时,较好地兼容了TensorFLow底层的各种库函数和核心模块。对于常见的神经网络层,Keras均实现了完美的封装,简单易用,特别适合初学者构建深度学习模型。

1、导入库

python 复制代码
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense,Dropout,Flatten,Conv2D,MaxPooling2D

2、序列构建神经网络模型

python 复制代码
#构建模型
model=Sequential()
#序列加入卷积层
model.add(Conv2D(...))
#序列加入池化层
model.add(MaxPooling2D(...))
#序列加入全连接层
model.add(Dense(...))
#序列加入随机失活
model.add(Dropout(...))
相关推荐
柠檬味拥抱几秒前
人工智能在教育中的角色-AI Agent助力个性化学习与学生辅导
人工智能
精灵vector3 分钟前
Agent短期记忆的几种持久化存储方式
人工智能·python
大模型之路8 分钟前
基于本地LLM与MCP架构构建AI智能体全指南
人工智能·架构
大霸王龙16 分钟前
系统模块与功能设计框架
人工智能·wpf
北京_宏哥18 分钟前
🔥Python零基础从入门到精通详细教程4-数据类型的转换- 上篇
前端·python·面试
乾巫宇宙国监察特使28 分钟前
Python的设计模式
python·测试
Hockor37 分钟前
写给前端的 Python 教程四(列表/元组)
前端·后端·python
Se7en25838 分钟前
Prefix Caching 详解:实现 KV Cache 的跨请求高效复用
人工智能
山顶听风43 分钟前
多层感知器MLP实现非线性分类(原理)
人工智能·分类·数据挖掘
佛喜酱的AI实践43 分钟前
5分钟入门Google ADK -- 从零构建你的第一个AI Agent
人工智能