知识图谱开创了人工智能的新范式,以数据驱动和知识驱动相结合,开启了下一代人工智能,实现了人与人、人与机器、机器与机器的协同协作。此外,知识图谱突破了传统的人工智能研究领域,从广泛的文本、结构化、视觉和时序等多模型数据中提取知识已成为知识图谱发展的主要方向之一,多模态知识图谮的构建可深度融合并灵活运用显式符号知识和隐式数据知识。将深度学习、图深度学习、迁移学习与元学习深度融合是知识图谱的发展趋势,可用于全类型、高涵盖的大规模知识图谱构建,实现更精深的知识推理,是通往鲁棒、可解释的人工智能之路。
Dieter Fensel 是语义网络研究的先驱之一,本书是其团队在知译者序识图谱领域的主要成果之一。本书共5章,主要讨论了知识图谱的整个生命周期,知识图谱的概念、构建、实现、维护和部署、技术架构和未来工作的方向,可作为知识图谱、模式识别与人工智能和计算机视觉等方面的科学家、工程师的参考用书。
知识图谱开创了人工智能的新范式,以数据驱动和知识驱动相结合,开启了下一代人工智能,实现了人与人、人与机器、机器与机器的协同协作。此外,知识图谱突破了传统的人工智能研究领域,从广泛的文本、结构化、视觉和时序等多模型数据中提取知识已成为知识图谱发展的主要方向之一,多模态知识图谱的构建可深度融合并灵活运用显式符号知识和隐式数据知识。将深度学习、图深度学习、迁移学习与元学习深度融合是知识图谱的发展趋势,可用于全类型、高涵盖的大规模知识图谱构建,实现更精深的知识推理,是通往鲁棒、可解释的人工智能之路。
节选自《知识图谱:方法、工具与案例》译者序