获取大疆无人机的飞控记录数据并绘制曲线

机型M350RTK,其飞行记录文件为加密的,我的完善代码如下

git@github.com:huashu996/DJFlightRecordParsing2TXT.git

一、下载安装官方的DJIFlightRecord

复制代码
git clone git@github.com:dji-sdk/FlightRecordParsingLib.git

飞行记录文件在打开【我的电脑】,进入遥控器内存,

文件路径:此电脑 > pm430 > 内部共享存储空间> DJI > com.dji.industry.pilot > FlightRecord

二、注册成为大疆开发者获取SDK 密钥

网址如下DJI Developer

注册完之后新建APP获得密钥

  1. 登录 DJI 开发者平台,点击"创建应用",App Type 选择 "Open API",自行填写"App 名称""分类"和"描述",点击 "创建"。

  2. 通过个人邮箱激活 App,在开发者网平台个人点击查看对应 App 信息,其中 App Key 即为下文所需的 SDK 密钥参数。

三、编译运行

编译

复制代码
cd FlightRecordParsingLib-master/dji-flightrecord-kit/build/Ubuntu/FlightRecordStandardizationCpp
sh generate.sh

运行

复制代码
cd ~/FlightRecordParsingLib-master/dji-flightrecord-kit/build/Ubuntu/FRSample
export SDK_KEY=your_sdk_key_value
./FRSample /home/cxl/FlightRecordParsingLib-master/DJrecord/DJIFlightRecord_2023-07-18_[16-14-57].txt

此时会在终端打印出一系列无人机的状态信息,但还是不能够使用

于是我更改了main.cc文件,使它能够保存数据到txt文件

四、获取单个数据

上一步生成的txt文件由于参数众多是巨大的,这里我写了一个py文件用于提取重要的信息,例如提取经纬度和高度

python 复制代码
import json

# Read JSON fragment from txt file
with open("output.txt", "r") as file:
    json_data = json.load(file)

# Extract all "aircraftLocation" and "altitude" data
location_altitude_data = []
for frame_state in json_data["info"]["frameTimeStates"]:
    aircraft_location = frame_state["flightControllerState"]["aircraftLocation"]
    altitude = frame_state["flightControllerState"]["altitude"]
    location_altitude_data.append({"latitude": aircraft_location["latitude"], "longitude": aircraft_location["longitude"], "altitude": altitude})

# Write values to a new txt file
with open("xyz_output.txt", "w") as f:
    for data in location_altitude_data:
        f.write(f"latitude: {data['latitude']}, longitude: {data['longitude']}, altitude: {data['altitude']}\n")

print("Values extracted and written to 'output.txt' file.")

就能够生成只有这几个参数的txt文件

五、生成轨迹

将经纬度和高度生成xyz坐标和画图,暂定以前20个点的均值作为投影坐标系的原点

python 复制代码
from pyproj import Proj
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d as mplot3d
def read_coordinates_from_txt(file_path):
    coordinates = []
    with open(file_path, 'r') as file:
        for line in file:
            parts = line.strip().split(',')
            latitude = float(parts[0].split(':')[1].strip())
            longitude = float(parts[1].split(':')[1].strip())
            altitude = float(parts[2].split(':')[1].strip())
            coordinates.append((latitude, longitude, altitude))
    return coordinates

def calculate_avg_coordinates(coordinates):
    num_points = len(coordinates)
    avg_latitude = sum(coord[0] for coord in coordinates) / num_points
    avg_longitude = sum(coord[1] for coord in coordinates) / num_points
    return avg_latitude, avg_longitude


def project_coordinates_to_xyz(coordinates, avg_latitude, avg_longitude, origin_x, origin_y):
    # Define the projection coordinate system (UTM zone 10, WGS84 ellipsoid)
    p = Proj(proj='utm', zone=20, ellps='WGS84', preserve_units=False)

    # Project all points in the coordinates list to xy coordinate system
    projected_coordinates = [p(longitude, latitude) for latitude, longitude, _ in coordinates]

    # Calculate the relative xyz values for each point with respect to the origin
    relative_xyz_coordinates = []
    for (x, y), (_, _, altitude) in zip(projected_coordinates, coordinates):
        relative_x = x - origin_x
        relative_y = y - origin_y
        relative_xyz_coordinates.append((relative_x, relative_y, altitude))
    return relative_xyz_coordinates
    
def three_plot_coordinates(coordinates):
    # Separate the x, y, z coordinates for plotting
    x_values, y_values, z_values = zip(*coordinates)

    # Create a new figure for the 3D plot
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    # Plot points as a 3D scatter plot
    ax.scatter(x_values, y_values, z_values, c='blue', label='Points')

    # Connect points with lines
    for i in range(1, len(x_values)):
        ax.plot([x_values[i - 1], x_values[i]], [y_values[i - 1], y_values[i]], [z_values[i - 1], z_values[i]], 'k-', linewidth=0.5)

    # Add labels and title
    ax.set_xlabel('X (meters)')
    ax.set_ylabel('Y (meters)')
    ax.set_zlabel('Z (meters)')
    ax.set_title('Projected Coordinates - 3D')

    # Display the 3D plot in a separate window
    plt.show()

def two_plot_coordinates(coordinates):
    # Separate the x, y, z coordinates for plotting
    x_values, y_values, z_values = zip(*coordinates)

    # Create a new figure for the 2D plot
    fig = plt.figure()

    # Plot points
    plt.scatter(x_values, y_values, c='blue', label='Points')

    # Connect points with lines
    for i in range(1, len(x_values)):
        plt.plot([x_values[i - 1], x_values[i]], [y_values[i - 1], y_values[i]], 'k-', linewidth=0.5)

    # Add labels and title
    plt.xlabel('X (meters)')
    plt.ylabel('Y (meters)')
    plt.title('Projected Coordinates - 2D')
    plt.legend()

    # Display the 2D plot in a separate window
    plt.show()
    
if __name__ == "__main__":
    input_file_path = "xyz_output.txt"  # Replace with the actual input file path

    coordinates = read_coordinates_from_txt(input_file_path)

    # Use the first 10 points to define the projection coordinate system
    num_points_for_avg = 20
    avg_coordinates = coordinates[:num_points_for_avg]
    avg_latitude, avg_longitude = calculate_avg_coordinates(avg_coordinates)

    # Project the average latitude and longitude to xy coordinate system
    p = Proj(proj='utm', zone=20, ellps='WGS84', preserve_units=False)
    origin_x, origin_y = p(avg_longitude, avg_latitude)

    print(f"Average Latitude: {avg_latitude}, Average Longitude: {avg_longitude}")
    print(f"Projected Coordinates (x, y): {origin_x}, {origin_y}")

    # Project all points in the coordinates list to xy coordinate system
    first_coordinates = [(0, 0, 0)] * min(len(coordinates), num_points_for_avg)
    projected_coordinates2 = project_coordinates_to_xyz(coordinates[num_points_for_avg:], avg_latitude, avg_longitude, origin_x, origin_y)
    projected_coordinates = first_coordinates+projected_coordinates2
    # Save projected coordinates to a new text file
    output_file_path = "projected_coordinates.txt"
    with open(output_file_path, 'w') as output_file:
        for x, y, z in projected_coordinates:
            output_file.write(f"x: {x}, y: {y}, z: {z}\n")
    three_plot_coordinates(projected_coordinates)
    two_plot_coordinates(projected_coordinates)

生成xyz的txt文档

上述只以坐标为例子,想获取其他数据,改变参数即可。

相关推荐
serve the people2 分钟前
python环境搭建 (七) pytest、pytest-asyncio、pytest-cov 试生态的核心组合
开发语言·python·pytest
java1234_小锋5 分钟前
分享一套不错的基于Python的Django宠物信息管理系统
开发语言·python·宠物
2401_841495646 分钟前
【Web开发】基于Flask搭建简单的应用网站
后端·python·flask·视图函数·应用实例·路由装饰器·调试模式
.ZGR.17 分钟前
从游戏到实战的线程进阶之旅:智能无人机防空平台
java·开发语言·无人机
NWU_白杨19 分钟前
智能无人机平台V4
java·开发语言·无人机
木卫二号Coding25 分钟前
第七十七篇-V100+llama-cpp-python-server+Qwen3-30B+GGUF
开发语言·python·llama
木卫二号Coding26 分钟前
第七十六篇-V100+llama-cpp-python+Qwen3-30B+GGUF
开发语言·python·llama
-To be number.wan26 分钟前
为什么 pyecharts 在 Jupyter Notebook 里显示空白?
ide·python·jupyter·数据分析
zhang61839926 分钟前
Linux中不同服务器之间迁移python 虚拟环境-conda-pack
linux·运维·python
忘忧记34 分钟前
用 Python 30 分钟做出自己的记事本
开发语言·python