【Hadoop 01】简介

目录

[1 Hadoop 简介](#1 Hadoop 简介)

[2 下载并配置Hadoop](#2 下载并配置Hadoop)

[2.1 修改/etc/profile](#2.1 修改/etc/profile)

[2.2 修改hadoop-env.sh](#2.2 修改hadoop-env.sh)

[2.3 修改core-site.xml](#2.3 修改core-site.xml)

[2.4 修改hdfs-site.xml](#2.4 修改hdfs-site.xml)

[2.5 修改mapred-site.xml](#2.5 修改mapred-site.xml)

[2.6 修改yarn-site.xml](#2.6 修改yarn-site.xml)

[2.7 修改workers](#2.7 修改workers)

[2.8 修改start-dfs.shstop-dfs.sh](#2.8 修改start-dfs.shstop-dfs.sh)

[2.9 修改start-yarn.shstop-yarn.sh](#2.9 修改start-yarn.shstop-yarn.sh)

[2.10 启动集群](#2.10 启动集群)

[3 HDFS](#3 HDFS)

[3.1 HDFS常见shell操作](#3.1 HDFS常见shell操作)

[3.2 HDFS实操案例](#3.2 HDFS实操案例)

[3.3 HDFS体系结构](#3.3 HDFS体系结构)

[3.4 DataNode总结](#3.4 DataNode总结)

[3.5 NameNode总结](#3.5 NameNode总结)

[3.6 HDFS的回收站](#3.6 HDFS的回收站)

[3.7 HDFS的安全模式](#3.7 HDFS的安全模式)

[3.8 案例:定时上传文件到HDFS](#3.8 案例:定时上传文件到HDFS)

[3.9 HDFS的高可用(HA)](#3.9 HDFS的高可用(HA))

[3.10 HDFS的高扩展(Federation)](#3.10 HDFS的高扩展(Federation))

[4 MapReduce](#4 MapReduce)

[4.1 Map阶段](#4.1 Map阶段)

[4.2 Redeuce阶段](#4.2 Redeuce阶段)

[4.3 MapRedeuce任务日志查看](#4.3 MapRedeuce任务日志查看)

[4.4 Shuffle原理](#4.4 Shuffle原理)

[4.5 Shuffle原理](#4.5 Shuffle原理)

[4.6 InputSplit原理](#4.6 InputSplit原理)

[4.7 RecodReader原理](#4.7 RecodReader原理)


1 Hadoop 简介

Hadoop适合海量数据分布式存储和分布式计算

Hadoop 3.x的细节优化:

  • Java改为支持8及以上
  • HDFS支持纠删码
  • HDFS支持多NameNode
  • MR任务级本地优化
  • 多重服务默认端口变更

Hadoop主要包含三大组件:HDFS+MapReduce+YARN

  • HDFS负责海量数据的分布式存储
  • MapReduce是一个计算模型,负责海量数据的分布式计算
  • YARN主要负责集群资源的管理和调度

2 下载并配置Hadoop

bash 复制代码
ssh-keygen -t rsa
cat ~/.ssh/id_rsa.pub  >> ~/.ssh/authorized_keys

把 公钥 的内容 附加到 authorized_keys 里:

修改hostname

bash 复制代码
su root
hostname bigdata01

第一次设置密码

更换主机名之后

2.1 修改/etc/profile

vim /etc/profile

添加

export HADOOP_HOME=/data/soft/hadoop-3.2.0
export PATH=.:$HADOOP_HOME/sbin:$HADOOP_HOME/bin:$PATH

需要root权限

等号前后不能有空格

java的环境也要有

wget --no-check-certificate --no-cookies --header "Cookie: oraclelicense=accept-securebackup-cookie"  http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz

source一下使得环境变量生效

source /etc/profile

检查一下环境是否装好

检查是否装好hadoop

以下文件在{HADOOP_HOME}/etc/hadoop/目录下

2.2 修改hadoop-env.sh

JAVA_HOME是ubuntu系统自带的 log日志是自己建立的

export JAVA_HOME=/home/gdan/data/jdk-8u131-linux-x64/jdk1.8.0_131
export HADOOP_LOG_DIR=/home/gdan/data/soft/hadoop_repo/logs/hadoop

(注意这里 等号附近 前往不能有空格)

2.3 修改core-site.xml

<configuration>
    <property>
         <name>fs.defaultFS</name>
         <value>hdfs://bigdata01:9000</value>
     </property>
     <property>
         <name>hadoop.tmp.dir</name>
         <value>/data/hadoop_repo</value>
     </property>
    <property>
        <name>hadoop.http.staticuser.user</name>
        <value>root</value>
    </property>
</configuration>

2.4 修改hdfs-site.xml

<configuration>
    <property>
        <name>dfs.replication</name>
        <value>1</value>
    </property>
</configuration>

2.5 修改mapred-site.xml

<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>

2.6 修改yarn-site.xml

<configuration>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.nodemanager.env-whitelist</name>
        <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
    </property>
</configuration>

2.7 修改workers

bigdata01

2.8 修改start-dfs.shstop-dfs.sh

在文件开头添加

HDFS_DATANODE_USER=root
HDFS_DATANODE_SECURE_USER=hdfs
HDFS_NAMENODE_USER=root
HDFS_SECONDARYNAMENODE_USER=root

2.9 修改start-yarn.shstop-yarn.sh

在文件开头添加

YARN_RESOURCEMANAGER_USER=root
HADOOP_SECURE_DN_USER=yarn
YARN_NODEMANAGER_USER=root

2.10 启动集群

第一次启动时,先初始化datanode,执行如下命令:

hdfs namenode -format

格式化操作

启动集群:(这里可能有一堆问题 例如openssh没有安装等等)

访问界面

3 HDFS

HDFS是一种允许文件通过网络在多台主机上分享的文件系统,可以让多台机器上的多个用户分享文件和存储空间

3.1 HDFS常见shell操作

hdfs dfs [-cmd] 
  • -ls:查询指定路径信息
  • -put:从本地上传文件
  • -cat:查看HDFS文件内容
  • -get:下载文件到本地
  • -mkdir [-p]:创建文件夹
  • -rm [-r]:删除文件/文件夹

3.2 HDFS实操案例

hdfs dfs -ls / | grep / | wc -l

linux管道

在Linux中,管道(pipe)是一种特殊的机制,用于将一个命令的输出连接到另一个命令的输入。通过使用管道,可以将多个命令组合在一起,以实现更复杂的任务。

管道使用竖线符号(|)表示。它将前一个命令的输出作为后一个命令的输入。例如,下面的命令将列出当前目录中的文件,并将结果通过管道传递给grep命令进行过滤:
ls | grep keyword

上述命令将列出包含关键字"keyword"的文件。

管道可以连接任意数量的命令。例如,下面的命令将列出当前目录中的文件,并按文件大小进行排序,然后显示前10个最大的文件:
ls -l | sort -nrk 5 | head -n 10

上述命令首先使用ls -l命令列出文件和目录的详细信息,然后将结果通过管道传递给sort命令,按第5列(文件大小)进行逆序排序,最后将结果通过管道传递给head命令,只显示前10行。

通过使用管道,可以将简单的命令组合成更复杂的操作,提高命令行的灵活性和效率。管道是Linux中强大而常用的功能之一。

ls 指定/目录,grep 搜索 / 目录,wc显示行数

hdfs dfs -ls / | grep / | awk '{print $8,$5}'

| awk '{print $8,$5}': 这部分命令继续使用管道符号将前一个命令的输出传递给awk命令。awk '{print $8,$5}'用于打印每行的第8个字段(文件或目录名)和第5个字段(文件大小)。字段之间用空格分隔。

3.3 HDFS体系结构

  • HDFS支持主从结构,主节点称为NameNode,支持多个;从节点称为DataNode,支持多个
  • HDFS中还包含一个SecondaryNameNode进程
  1. NameNode--大老板
  • NameNode是整个文件系统的管理节点
  • 它主要维护着整个文件系统的文件目录树,文件/目录的信息和每个文件对应的数据块列表,并且还负责接收用户的操作请求
  1. SecondaryNameNode--秘书
  • 主要负责定期的把edits中的内容合并到fsimage中
  • 这个合并操作称为checkpoint,在合并的时候会对edits中的内容进行转换,生成新的内容保存到fsimage文件中
  • 注意:在NameNode的HA(高可用)架构中没有SecondaryNameNode进程,文件合并操作会由standby NameNode负责实现
  1. DataNode--小二
  • 提供真实文件数据的存储服务
  • HDFS会按照固定的大小,顺序对文件进行划分并编号,划分好的每一个块称一个Block,HDFS默认Block大小是128MB
  • HDFS中,如果一个文件小于一个数据块的大小,那么并不会占用整个数据块的存储空间
  • Replication:多副本机制,HDFS默认副本数量为3
  • 通过dfs.replication属性控制

3.4 DataNode总结

注意:Block块存放在哪些DataNode上,只有DataNode自己知道,当集群启动的时候,DataNode会扫描自己节点上面的所有Block块信息,然后把节点和这个节点上的所有Block块信息告诉给NameNode。这个关系是每次重启集群都会动态加载的【这个其实就是集群为什么数据越多,启动越慢的原因】

3.5 NameNode总结

NameNode维护了两份关系:

  • 第一份关系:File与Block list的关系,对应的关系信息存储在fsimage和edits文件中(当NameNode启动的时候会把文件中的元数据信息加载到内存中)
  • 第二份关系:Datanode与Block的关系(当DataNode启动时,会把当前节点上的Block信息和节点信息上报给NameNode)

文件的元数据信息在NameNode里面都会占用150字节的存储空间。

1,fsimage文件其实是hadoop文件系统元数据的一个永久性的检查点,其中包含hadoop文件系统中的所有目录和文件idnode的序列化信息。

2,edits文件存放的是hadoop文件系统的所有更新操作的路径,文件系统客户端执行的所有写操作首先会被记录到edits文件中。

3.6 HDFS的回收站

在core-site.xml添加配置

<property>
    <name>fs.trash.interval</name>
    <value>1440</value>
</property>

重启hadoop

stop-all.sh
start-all.sh

忽略回收站删除文件的命令:

  • HDFS为每个用户创建一个回收站目录:/user/用户名/.Trash/
  • 回收站中的数据都会有一个默认保存周期,过期未恢复则会被HDFS自动彻底删除
  • 注意:HDFS的回收站默认是没有开启的,需要修改core-site.xml中的fs.trash.interval属性

3.7 HDFS的安全模式

  • 集群刚启动时,HDFS会进入安全模式,此时无法执行操作
  • 查看安全模式:hdfs dfsadmin -safemode get
  • 离开安全模式:hdfs dfsadmin -safemode leave

3.8 案例:定时上传文件到HDFS

案例需求 :例如日志文件为access_2020_01_01.log,每天上传到HDFS中
解决思路

  1. 我们需要获取到昨天日志文件的名称
  2. 在HDFS上面使用昨天的日期创建目录
  3. 将昨天的日志文件上传到刚创建的HDFS目录中
  4. 要考虑到脚本重跑,补数据的情况
  5. 配置crontab任务

3.9 HDFS的高可用(HA)

  • HDFS的HA,表示一个集群中存在多个NameNode,只有一个NameNode是处于Active状态,其它的是处于Standby状态
  • Active NameNode(ANN)负责所有客户端的操作,Standby NameNode(SNN)用于同步ANN的状态信息,提供快速故障恢复能力
  • 使用HA的时候,不能启动SecondaryNameNode

3.10 HDFS的高扩展(Federation)

  • Federation可解决单一命名空间的一些问题,提供以下特性:HDFS集群扩展性、性能更高效、良好的隔离性

4 MapReduce

  • MapReduce是一种分布式计算模型,主要用于搜索领域,解决海量数据的计算问题
  • MapReduce有两个阶段组成:Map和Reduce

4.1 Map阶段

  1. 框架会把输入文件(夹)划分为很多InputSplit,默认每个HDFS的Block对应一个InputSplit。通过RecordReader类,把每个InputSplit解析成一个个<k1,v1>。默认每一行数据,会被解析成一个<k1,v1>
  2. 框架调用Mapper类中的map(...)函数,map函数的输入是<k1,v1>,输出是<k2,v2>。一个InputSplit对应一个Map Task
  3. 框架对map函数输出的<k2,v2>进行分区。不同分区中的<k2,v2>由不同的Reduce Task处理,默认只有1个分区
  4. 框架对每个分区中的数据,按照k2进行排序、分组。分组,指的是相同k2的v2分成一个组
  5. 在Map阶段,框架可以执行Combiner操作【可选】
  6. 框架会把Map Task输出的<k2,v2>写入Linux的磁盘文件中

4.2 Redeuce阶段

  1. 框架对多个Map Task的输出,按照不同的分区,通过网络Copy到不同的Reduce节点,这个过程称作Shuffle
  2. 框架对Reduce节点接收到的相同分区的<k2,v2>数据进行合并、排序、分组
  3. 框架调用Reducer类中的reduce方法,输入<k2,{v2...}>,输出<k3,v3>。一个<k2,{v2...}>调用一次reduce函数
  4. 框架把Reduce的输出结果保存到HDFS中

4.3 MapRedeuce任务日志查看

在yarn-site.xml添加配置,开启YARN的日志聚合功能,把散落在NodeManager节点上的日志统一收集管理,方便查看日志

XML 复制代码
<property> 
    <name>yarn.log-aggregation-enable</name> 
    <value>true</value>
</property>
<property>
    <name>yarn.log.server.url</name>
    <value>http://bigdata01:19888/jobhistory/logs/</value>
</property>

重启Hadoop,并启动HistoryServer

XML 复制代码
stop-all.sh
start-all.sh
mapred --daemon start historyserver

使用命令查看任务执行的日志:这里的id不一定,可以通过 hadoop job -list 来看看是否有任务

XML 复制代码
yarn logs -applicationId application_158771356

停止yarn任务:

XML 复制代码
yarn application -kill application_15877135678

4.4 Shuffle原理

  1. 在Map阶段中,通过InputSplit过程产生一个Map任务,该任务在执行的时候会把 <k1,v1>转化为<k2,v2>,这些数据会先临时存储到一个内存缓冲区中,这个内存缓冲区的大小默认是100M(io.sort.mb属性),
  2. 当达到内存缓冲区大小的80%(io.sort.spill.percent)即80M时,会把内 存中的数据溢写到本地磁盘中(mapred.local.dir),直到Map把所有的数据都计算完
  3. 最后会把内存缓冲区中的数据一次性全部刷新到本地磁盘文件上
  4. 数据会被shuffle线程分别拷贝到不同的reduce节点,不同Map任务中的相同分区的数据会在同一个reduce节点进行合并,合并以后会执行reduce的功能,最终产生结果数据。

:shuffle其实是横跨Map端和Reduce端,主要是负责把Map端产生的数据通过网络拷贝到Reduce阶段进行统一聚合计算。

4.5 Shuffle原理

  • 序列化:将内存中的对象信息转成二进制的形式,方便存储到文件中
  • Hadoop实现了自己的序列化和反序列化机制,单独设计了一些writable的实现,例如LongwritableText

特点:

  1. 紧凑:高效使用存储空间
  2. 快速:读写数据的额外开销小
  3. 可扩展:可透明地读取老格式的数据
  4. 互操作:支持多语言的交互

4.6 InputSplit原理

  • 当文件剩余大小bytesRemaining与splitSize的比值大于1.1的时候,就继续切分,否则,剩下的直接作为一个InputSize(即当bytesRemaining/splitSize <= 1.1时,会停止划分,将剩下的作为一个InputSplit)
  • 把不支持切割的文件作为一个InputSplit,比如压缩文件

4.7 RecodReader原理

  • 每一个InputSplit都有一个RecordReader,作用是把InputSplit中的数据解析成Record,即<k1,v1>
  • 如果这个InputSplit不是第一个InputSplit,将会丢掉读取出来的第一行,因为总是通过next()方法多读取一行(会多读取下一个InputSplit的第一行)
相关推荐
天冬忘忧2 分钟前
Kafka 数据倾斜:原因、影响与解决方案
分布式·kafka
隔着天花板看星星6 分钟前
Kafka-Consumer理论知识
大数据·分布式·中间件·kafka
holywangle7 分钟前
解决Flink读取kafka主题数据无报错无数据打印的重大发现(问题已解决)
大数据·flink·kafka
隔着天花板看星星9 分钟前
Kafka-副本分配策略
大数据·分布式·中间件·kafka
Lorin 洛林28 分钟前
Hadoop 系列 MapReduce:Map、Shuffle、Reduce
大数据·hadoop·mapreduce
金刚猿29 分钟前
简单理解下基于 Redisson 库的分布式锁机制
分布式·分布式锁·redisson
DolphinScheduler社区44 分钟前
大数据调度组件之Apache DolphinScheduler
大数据
SelectDB技术团队44 分钟前
兼顾高性能与低成本,浅析 Apache Doris 异步物化视图原理及典型场景
大数据·数据库·数据仓库·数据分析·doris
我一直在流浪1 小时前
Kafka - 消费者程序仅消费一半分区消息的问题
分布式·kafka
panpantt3212 小时前
【参会邀请】第二届大数据与数据挖掘国际会议(BDDM 2024)邀您相聚江城!
大数据·人工智能·数据挖掘