OpenAI的Function calling 和 LangChain的Search Agent

OpenAI的Function calling

openai最近发布的gpt-3.5-turbo-0613gpt-4-0613版本模型增加了function calling的功能,该功能通过定义功能函数,gpt通过分析问题和函数功能描述来决定是否调用函数,并且生成函数对应的入参。函数调用的功能可以弥补gpt的一些缺点,比如实时信息的缺乏、特定领域能力,使得能够进一步利用gpt的逻辑推理能力,可以将问题进行分解处理,解决问题能力更加强大。

gpt的函数调用功能步骤如下:

1.使用问句和函数定义调用gpt

2.gpt选择是否调用函数,并输出参数

3.解析参数 调用函数

4.将函数返回作为追加信息再次调用gpt

下面是一个通过调用search api的例子

1.定义+描述函数

下面代码介绍了一个搜索函数,可以通过GoogleSerperAPI实时搜索网络上的信息。

cs 复制代码
###定义functions,用于描述函数作用和参数介绍。
functions = [
    {
        "name": "get_info_from_web",
        "description": "get more informations from internet use google search",
        "parameters": {
            "type": "object",
            "properties": {
                "query": {
                    "type": "string",
                    "description": "all the questions or information you want search from internet",
                }
            },
            "required": ["query"],
        },
    }
]

###函数定义
def get_info_from_web(query):
    search = GoogleSerperAPIWrapper(serper_api_key="xxxxx")
    return search.run(query)

2.调用gpt,决定是否调用函数以及函数参数

当用户问句为"今天杭州天气怎么样?"时,gpt做出了进行调用get_info_from_web函数的决定,并且调用的参数为"query": "杭州天气"。

python 复制代码
messages = []
messages.append({"role": "system", "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous. "})
messages.append({"role": "user", "content": "今天杭州天气怎么样?"})
chat_response = chat_completion_request(
    messages, functions=functions
)
assistant_message = chat_response.json()["choices"][0]["message"]
messages.append(assistant_message)
print(assistant_message)

>>>
{
	'role': 'assistant',
	'content': None,
	'function_call': {
		'name': 'get_info_from_web',
		'arguments': '{\n  "query": "杭州天气"\n}'
	}
}

3.执行gpt的决定,获得回答问题的中间结果

调用第2步中gpt输出的参数执行相应的函数,获得中间结果。

python 复制代码
assistant_message = chat_response.json()["choices"][0]["message"]
if assistant_message.get("function_call"):
    if assistant_message["function_call"]["name"] == "get_info_from_web":
        query = json.loads(assistant_message["function_call"]["arguments"])["query"]
        results = get_info_from_web(query)
    else:
        results = f"Error: function {assistant_message['function_call']['name']} does not exist"
print(results)

>>>
81°F

4.函数结果和原始问题再次询问gpt,获得最终结果

python 复制代码
messages.append({"role": "function", "name": assistant_message["function_call"]["name"], "content": results})
second_response = openai.ChatCompletion.create(
            model= GPT_MODEL,
            messages=messages
        )
print(second_response["choices"][0]["message"]["content"])

>>>
今天杭州的天气是81°F。

LangChain的Search Agent

在openai的function calling发布之前,LangChain的Agent就可以实现类似功能。Agent接口是LangChain中一个重要的模块,一些应用程序需要根据用户输入灵活地调用LLM和其他工具。Agent接口为此类应用程序提供了灵活性。Agent可以访问一套工具,并根据用户输入确定要使用哪些工具。Agent可以使用多个工具,并将一个工具的输出用作下一个工具的输入。

以下是search agent的例子。定义GoogleSerperApi工具作为LLM可用的tool,帮助解决相关问题。

python 复制代码
from langchain.utilities import GoogleSerperAPIWrapper
from langchain.llms.openai import OpenAI
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType

llm = OpenAI(temperature=0)
search = GoogleSerperAPIWrapper(serper_api_key="xxxxxx")
tools = [
    Tool(
        name="Intermediate Answer",
        func=search.run,
        description="useful for when you need to ask with search",
    )
]

self_ask_with_search = initialize_agent(
    tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True
)

self_ask_with_search.run(
    "今天杭州天气怎么样?"
)

>>>
> Entering new AgentExecutor chain...
 Yes.
Follow up: 今天是几号?
Intermediate answer: Sunday, July 16, 2023
Follow up: 杭州今天的天气情况?
Intermediate answer: 88°F
So the final answer is: 88°F

> Finished chain.
88°F

agent功能通过设计prompt实现,search agent的prompt设计如下:

python 复制代码
"""Question: Who lived longer, Muhammad Ali or Alan Turing?
Are follow up questions needed here: Yes.
Follow up: How old was Muhammad Ali when he died?
Intermediate answer: Muhammad Ali was 74 years old when he died.
Follow up: How old was Alan Turing when he died?
Intermediate answer: Alan Turing was 41 years old when he died.
So the final answer is: Muhammad Ali

Question: When was the founder of craigslist born?
Are follow up questions needed here: Yes.
Follow up: Who was the founder of craigslist?
Intermediate answer: Craigslist was founded by Craig Newmark.
Follow up: When was Craig Newmark born?
Intermediate answer: Craig Newmark was born on December 6, 1952.
So the final answer is: December 6, 1952

Question: Who was the maternal grandfather of George Washington?
Are follow up questions needed here: Yes.
Follow up: Who was the mother of George Washington?
Intermediate answer: The mother of George Washington was Mary Ball Washington.
Follow up: Who was the father of Mary Ball Washington?
Intermediate answer: The father of Mary Ball Washington was Joseph Ball.
So the final answer is: Joseph Ball

Question: Are both the directors of Jaws and Casino Royale from the same country?
Are follow up questions needed here: Yes.
Follow up: Who is the director of Jaws?
Intermediate answer: The director of Jaws is Steven Spielberg.
Follow up: Where is Steven Spielberg from?
Intermediate answer: The United States.
Follow up: Who is the director of Casino Royale?
Intermediate answer: The director of Casino Royale is Martin Campbell.
Follow up: Where is Martin Campbell from?
Intermediate answer: New Zealand.
So the final answer is: No

Question: {input}
Are followup questions needed here:{agent_scratchpad}"""

可以从prompt看出,通过四个例子提出了解决问题的方式,即通过follow up + Intermediate answer 分解问题并解决子问题。follow up是gpt的输出,表示需要search tool搜索的问题, Intermediate answer 则为search tool的答案,循环多次之后得到最终答案。

相关推荐
成富7 分钟前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算20 分钟前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森31 分钟前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing112332 分钟前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子37 分钟前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing1 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗1 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
1 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_1 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习
攻城狮_Dream2 小时前
“探索未来医疗:生成式人工智能在医疗领域的革命性应用“
人工智能·设计·医疗·毕业