pytorch实现图像投影变换

python 复制代码
import cv2
import torch


def cpu_remap(numpy_img,mapx,mapy):
    return cv2.remap(numpy_img,mapx,mapy,cv2.INTER_LINEAR)

def gpu_remap(numpy_img,map_tensor):
    '''
    numpy_img:原始图像格式为ndarray
    map_tensor:[N,H,W,C]用于grid_sample的map参数,需要规制到-1到1
    '''
    # 准备图像数据
    img_tensor = torch.from_numpy(numpy_img).contiguous().cuda(non_blocking=True)
    img_tensor = img_tensor.permute(2,0,1).unsqueeze(0).cuda().float()
    res = torch.nn.functional.grid_sample(img_tensor,map_tensor,
                                          mode='bilinear',
                                          padding_mode='zeros',
                                          align_corners=None)
    res = res.char()
    res = res[0].permute(1,2,0)
    res = res.cpu()
    res = res.numpy()
    res = np.uint8(res)
    return res
@profile
def main():
   #已知单应矩阵(投影矩阵M)
   M=np.asarray([[-5.23249213e+00, -2.83428439e+01,  2.74163372e+03],
       [-2.71994329e+00, -2.52929752e+01,  1.13544900e+04],
       [-1.38531350e-04, -1.40379841e-02,  1.00000000e+00]])
   
   
   img_revise = cv2.imread('206_revise.jpg') # 无畸变的图像
   img_perspect = cv2.warpPerspective(img_revise, M, (2800, 1500), borderValue=0)
   cv2.imwrite('warpPerspective.jpg',img_perspect)

   x, y = np.meshgrid(np.arange(2800), np.arange(1500))
   grid = np.vstack([x.flatten(),y.flatten(),np.ones(y.flatten().shape)])
   grid_trans = np.linalg.inv(M)@grid
   grid_trans = grid_trans/grid_trans[2]
   grid_trans = grid_trans[:2]
   mapx = np.float32(np.reshape(grid_trans[0],[1500,2800]))#/1920*2-1
   mapy = np.float32(np.reshape(grid_trans[1],[1500,2800]))#/1080*2-1
   print(mapx.shape)
   img_perspcet = cpu_remap(img_revise,mapx,mapy)
   cv2.imwrite('cpu_remap.jpg',img_perspect)

   grid_trans_x = torch.from_numpy(mapx).unsqueeze(2)/1920*2-1
   grid_trans_y = torch.from_numpy(mapy).unsqueeze(2)/1080*2-1
   map_tensor = torch.cat([grid_trans_x,grid_trans_y],2).unsqueeze(0).float().cuda()
   img_perspect = gpu_remap(img_revise,map_tensor)
   cv2.imwrite('gpu_remap.jpg',img_perspect)
if __name__=='__main__':
    main()

还是那个问题,数据在cpu->GPU拷贝时会慢,单GPU的计算耗时很短

相关推荐
Faker66363aaa7 分钟前
指纹过滤器缺陷检测与分类 —— 基于MS-RCNN_X101-64x4d_FPN_1x_COCO模型的实现与分析_1
人工智能·目标跟踪·分类
金融小师妹20 分钟前
基于LSTM-GARCH-EVT混合模型的贵金属极端波动解析:黄金白银双双反弹的逻辑验证
大数据·人工智能·深度学习·机器学习
代码匠心27 分钟前
Trae IDE 隐藏玩法:接入即梦 AI,生成高质量大片!
人工智能·ai·trae·skills
陈天伟教授33 分钟前
人工智能应用- 语言理解:01. 写作与对话
人工智能·深度学习·语音识别
铁蛋AI编程实战35 分钟前
OpenClaw+Kimi K2.5开源AI助手零门槛部署教程:本地私有化+远程控制+办公自动化全实操
人工智能·开源
liliangcsdn35 分钟前
文本视频音频分块工具 - Semantic Chunkers
人工智能·音视频
OPEN-Source37 分钟前
大模型实战:大模型推理性能优化与成本控制实战
人工智能·性能优化·rag
雨大王5121 小时前
工业AI+如何赋能汽车供应链智能化升级?
人工智能
彬鸿科技1 小时前
bhSDR Studio/Matlab 入门指南(三):频谱检测演示界面全解析
人工智能·软件无线电
新缸中之脑1 小时前
为什么氛围编程有意义
人工智能