【NCNN】NCNN中Mat与CV中Mat的使用区别及相互转换方法

目录

  • 相同点与不同点
  • cv::Mat转ncnn::Mat
    • [cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR](#cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR)
    • [cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY](#cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY)
    • [cv::Mat CV_8UC1 -> ncnn::Mat 1 channel](#cv::Mat CV_8UC1 -> ncnn::Mat 1 channel)
  • ncnn::Mat转cv::Ma
    • [ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR](#ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR)
    • [ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order](#ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order)
    • [ncnn::Mat 1 channel -> cv::Mat CV_32FC1](#ncnn::Mat 1 channel -> cv::Mat CV_32FC1)
    • [ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1](#ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1)

相同点与不同点

ncnn::Mat和cv::Mat在某些方面是相似的,但也存在一些区别。

相似之处:

ncnn::Mat和cv::Mat都是用于表示图像或矩阵数据的类。

它们都提供了类似的API,可以访问和操作图像数据。

它们都支持多种像素格式和通道数。

区别之处:

库的不同:ncnn::Mat是ncnn库中的数据类型,用于在ncnn中进行模型推理和图像处理。而cv::Mat是OpenCV库中的数据类型,用于图像处理和计算机视觉任务。

数据存储方式:ncnn::Mat使用行优先存储方式,而cv::Mat使用列优先存储方式。这意味着在访问像素时,它们的内存布局是不同的。

功能和用途:ncnn::Mat主要用于在ncnn中进行模型推理和图像处理,提供了与ncnn库相关的功能和接口。cv::Mat主要用于图像处理和计算机视觉任务,提供了丰富的图像处理和计算机视觉函数。

总结来说,ncnn::Mat和cv::Mat在用途和功能上有一些差异,但它们都用于处理图像和矩阵数据,并提供了类似的API,以便于访问和操作这些数据。

ncnn中数据的排列格式为(channel, h, w), cv::Mat中数据的排列格式为(h, w, channel).

cv::Mat转ncnn::Mat

cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR

cpp 复制代码
// cv::Mat a(h, w, CV_8UC3);
ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_BGR2RGB, a.cols, a.rows);

cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY

bash 复制代码
ncnn::Mat inbgr = ncnn::Mat::from_pixels(bgr.data, ncnn::Mat::PIXEL_BGR2GRAY, bgr.cols, bgr.rows);

cv::Mat CV_8UC1 -> ncnn::Mat 1 channel

bash 复制代码
ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_GRAY, a.cols, a.rows);

ncnn::Mat转cv::Ma

ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR

bash 复制代码
cv::Mat a(in.h, in.w, CV_8UC3);
in.to_pixels(a.data, ncnn::Mat::PIXEL_BGR2RGB);

ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order

bash 复制代码
// ncnn::Mat in(w, h, 3);
cv::Mat a(in.h, in.w, CV_8UC3);
in.to_pixels(a.data, ncnn::Mat::PIXEL_RGB);

ncnn::Mat 1 channel -> cv::Mat CV_32FC1

bash 复制代码
You could consume or manipulate ncnn::Mat data directly to avoid data copy
// ncnn::Mat in;
cv::Mat a(in.h, in.w, CV_32FC1);
memcpy((uchar*)a.data, in.data, in.w * in.h * sizeof(float));

ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1

bash 复制代码
// ncnn::Mat in(w, h, channels);
std::vector<cv::Mat> a(in.c);
for (int p=0; p<in.c; p++)
{
    a[p] = cv::Mat(in.h, in.w, CV_32FC1);
    memcpy((uchar*)a[p].data, in.channel(p), in.w * in.h * sizeof(float));
}
相关推荐
Yuleave11 分钟前
高效流式大语言模型(StreamingLLM)——基于“注意力汇聚点”的突破性研究
人工智能·语言模型·自然语言处理
cqbzcsq13 分钟前
ESMC-600M蛋白质语言模型本地部署攻略
人工智能·语言模型·自然语言处理
刀客1231 小时前
python3+TensorFlow 2.x(四)反向传播
人工智能·python·tensorflow
SpikeKing1 小时前
LLM - 大模型 ScallingLaws 的设计 100B 预训练方案(PLM) 教程(5)
人工智能·llm·预训练·scalinglaws·100b·deepnorm·egs
小枫@码2 小时前
免费GPU算力,不花钱部署DeepSeek-R1
人工智能·语言模型
liruiqiang052 小时前
机器学习 - 初学者需要弄懂的一些线性代数的概念
人工智能·线性代数·机器学习·线性回归
Icomi_2 小时前
【外文原版书阅读】《机器学习前置知识》1.线性代数的重要性,初识向量以及向量加法
c语言·c++·人工智能·深度学习·神经网络·机器学习·计算机视觉
微学AI2 小时前
GPU算力平台|在GPU算力平台部署可图大模型Kolors的应用实战教程
人工智能·大模型·llm·gpu算力
西猫雷婶2 小时前
python学opencv|读取图像(四十六)使用cv2.bitwise_or()函数实现图像按位或运算
人工智能·opencv·计算机视觉
IT古董2 小时前
【深度学习】常见模型-生成对抗网络(Generative Adversarial Network, GAN)
人工智能·深度学习·生成对抗网络