【NCNN】NCNN中Mat与CV中Mat的使用区别及相互转换方法

目录

  • 相同点与不同点
  • cv::Mat转ncnn::Mat
    • [cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR](#cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR)
    • [cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY](#cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY)
    • [cv::Mat CV_8UC1 -> ncnn::Mat 1 channel](#cv::Mat CV_8UC1 -> ncnn::Mat 1 channel)
  • ncnn::Mat转cv::Ma
    • [ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR](#ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR)
    • [ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order](#ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order)
    • [ncnn::Mat 1 channel -> cv::Mat CV_32FC1](#ncnn::Mat 1 channel -> cv::Mat CV_32FC1)
    • [ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1](#ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1)

相同点与不同点

ncnn::Mat和cv::Mat在某些方面是相似的,但也存在一些区别。

相似之处:

ncnn::Mat和cv::Mat都是用于表示图像或矩阵数据的类。

它们都提供了类似的API,可以访问和操作图像数据。

它们都支持多种像素格式和通道数。

区别之处:

库的不同:ncnn::Mat是ncnn库中的数据类型,用于在ncnn中进行模型推理和图像处理。而cv::Mat是OpenCV库中的数据类型,用于图像处理和计算机视觉任务。

数据存储方式:ncnn::Mat使用行优先存储方式,而cv::Mat使用列优先存储方式。这意味着在访问像素时,它们的内存布局是不同的。

功能和用途:ncnn::Mat主要用于在ncnn中进行模型推理和图像处理,提供了与ncnn库相关的功能和接口。cv::Mat主要用于图像处理和计算机视觉任务,提供了丰富的图像处理和计算机视觉函数。

总结来说,ncnn::Mat和cv::Mat在用途和功能上有一些差异,但它们都用于处理图像和矩阵数据,并提供了类似的API,以便于访问和操作这些数据。

ncnn中数据的排列格式为(channel, h, w), cv::Mat中数据的排列格式为(h, w, channel).

cv::Mat转ncnn::Mat

cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR

cpp 复制代码
// cv::Mat a(h, w, CV_8UC3);
ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_BGR2RGB, a.cols, a.rows);

cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY

bash 复制代码
ncnn::Mat inbgr = ncnn::Mat::from_pixels(bgr.data, ncnn::Mat::PIXEL_BGR2GRAY, bgr.cols, bgr.rows);

cv::Mat CV_8UC1 -> ncnn::Mat 1 channel

bash 复制代码
ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_GRAY, a.cols, a.rows);

ncnn::Mat转cv::Ma

ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR

bash 复制代码
cv::Mat a(in.h, in.w, CV_8UC3);
in.to_pixels(a.data, ncnn::Mat::PIXEL_BGR2RGB);

ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order

bash 复制代码
// ncnn::Mat in(w, h, 3);
cv::Mat a(in.h, in.w, CV_8UC3);
in.to_pixels(a.data, ncnn::Mat::PIXEL_RGB);

ncnn::Mat 1 channel -> cv::Mat CV_32FC1

bash 复制代码
You could consume or manipulate ncnn::Mat data directly to avoid data copy
// ncnn::Mat in;
cv::Mat a(in.h, in.w, CV_32FC1);
memcpy((uchar*)a.data, in.data, in.w * in.h * sizeof(float));

ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1

bash 复制代码
// ncnn::Mat in(w, h, channels);
std::vector<cv::Mat> a(in.c);
for (int p=0; p<in.c; p++)
{
    a[p] = cv::Mat(in.h, in.w, CV_32FC1);
    memcpy((uchar*)a[p].data, in.channel(p), in.w * in.h * sizeof(float));
}
相关推荐
天涯海风1 小时前
检索增强生成(RAG) 缓存增强生成(CAG) 生成中检索(RICHES) 知识库增强语言模型(KBLAM)
人工智能·缓存·语言模型
lxmyzzs3 小时前
基于深度学习CenterPoint的3D目标检测部署实战
人工智能·深度学习·目标检测·自动驾驶·ros·激光雷达·3d目标检测
跟着珅聪学java3 小时前
Apache OpenNLP简介
人工智能·知识图谱
AwhiteV4 小时前
利用图数据库高效解决 Text2sql 任务中表结构复杂时占用过多大模型上下文的问题
数据库·人工智能·自然语言处理·oracle·大模型·text2sql
Black_Rock_br4 小时前
AI on Mac, Your Way!全本地化智能代理,隐私与性能兼得
人工智能·macos
☺����5 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
fsnine5 小时前
机器学习——数据清洗
人工智能·机器学习
小猿姐5 小时前
KubeBlocks AI:AI时代的云原生数据库运维探索
数据库·人工智能·云原生·kubeblocks
算法_小学生6 小时前
循环神经网络(RNN, Recurrent Neural Network)
人工智能·rnn·深度学习
吱吱企业安全通讯软件6 小时前
吱吱企业通讯软件保证内部通讯安全,搭建数字安全体系
大数据·网络·人工智能·安全·信息与通信·吱吱办公通讯