【NCNN】NCNN中Mat与CV中Mat的使用区别及相互转换方法

目录

  • 相同点与不同点
  • cv::Mat转ncnn::Mat
    • [cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR](#cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR)
    • [cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY](#cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY)
    • [cv::Mat CV_8UC1 -> ncnn::Mat 1 channel](#cv::Mat CV_8UC1 -> ncnn::Mat 1 channel)
  • ncnn::Mat转cv::Ma
    • [ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR](#ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR)
    • [ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order](#ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order)
    • [ncnn::Mat 1 channel -> cv::Mat CV_32FC1](#ncnn::Mat 1 channel -> cv::Mat CV_32FC1)
    • [ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1](#ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1)

相同点与不同点

ncnn::Mat和cv::Mat在某些方面是相似的,但也存在一些区别。

相似之处:

ncnn::Mat和cv::Mat都是用于表示图像或矩阵数据的类。

它们都提供了类似的API,可以访问和操作图像数据。

它们都支持多种像素格式和通道数。

区别之处:

库的不同:ncnn::Mat是ncnn库中的数据类型,用于在ncnn中进行模型推理和图像处理。而cv::Mat是OpenCV库中的数据类型,用于图像处理和计算机视觉任务。

数据存储方式:ncnn::Mat使用行优先存储方式,而cv::Mat使用列优先存储方式。这意味着在访问像素时,它们的内存布局是不同的。

功能和用途:ncnn::Mat主要用于在ncnn中进行模型推理和图像处理,提供了与ncnn库相关的功能和接口。cv::Mat主要用于图像处理和计算机视觉任务,提供了丰富的图像处理和计算机视觉函数。

总结来说,ncnn::Mat和cv::Mat在用途和功能上有一些差异,但它们都用于处理图像和矩阵数据,并提供了类似的API,以便于访问和操作这些数据。

ncnn中数据的排列格式为(channel, h, w), cv::Mat中数据的排列格式为(h, w, channel).

cv::Mat转ncnn::Mat

cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR

cpp 复制代码
// cv::Mat a(h, w, CV_8UC3);
ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_BGR2RGB, a.cols, a.rows);

cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY

bash 复制代码
ncnn::Mat inbgr = ncnn::Mat::from_pixels(bgr.data, ncnn::Mat::PIXEL_BGR2GRAY, bgr.cols, bgr.rows);

cv::Mat CV_8UC1 -> ncnn::Mat 1 channel

bash 复制代码
ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_GRAY, a.cols, a.rows);

ncnn::Mat转cv::Ma

ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR

bash 复制代码
cv::Mat a(in.h, in.w, CV_8UC3);
in.to_pixels(a.data, ncnn::Mat::PIXEL_BGR2RGB);

ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order

bash 复制代码
// ncnn::Mat in(w, h, 3);
cv::Mat a(in.h, in.w, CV_8UC3);
in.to_pixels(a.data, ncnn::Mat::PIXEL_RGB);

ncnn::Mat 1 channel -> cv::Mat CV_32FC1

bash 复制代码
You could consume or manipulate ncnn::Mat data directly to avoid data copy
// ncnn::Mat in;
cv::Mat a(in.h, in.w, CV_32FC1);
memcpy((uchar*)a.data, in.data, in.w * in.h * sizeof(float));

ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1

bash 复制代码
// ncnn::Mat in(w, h, channels);
std::vector<cv::Mat> a(in.c);
for (int p=0; p<in.c; p++)
{
    a[p] = cv::Mat(in.h, in.w, CV_32FC1);
    memcpy((uchar*)a[p].data, in.channel(p), in.w * in.h * sizeof(float));
}
相关推荐
车斗26 分钟前
win10 笔记本电脑安装 pytorch+cuda+gpu 大模型开发环境过程记录
人工智能·pytorch·电脑
KY_chenzhao28 分钟前
数据驱动防灾:AI 大模型在地质灾害应急决策中的关键作用。基于DeepSeek/ChatGPT的AI智能体开发
人工智能·chatgpt·智能体·deepseek·本地化部署
大多_C28 分钟前
量化方法分类
人工智能·分类·数据挖掘
www_pp_1 小时前
# 基于 OpenCV 的人脸识别实战:从基础到进阶
人工智能·opencv·计算机视觉
三月七(爱看动漫的程序员)1 小时前
LLM面试题六
数据库·人工智能·gpt·语言模型·自然语言处理·llama·milvus
蹦蹦跳跳真可爱5892 小时前
Python----计算机视觉处理(Opencv:道路检测之车道线拟合)
开发语言·人工智能·python·opencv·计算机视觉
deephub3 小时前
计算加速技术比较分析:GPU、FPGA、ASIC、TPU与NPU的技术特性、应用场景及产业生态
人工智能·深度学习·gpu·计算加速
杰克逊的日记3 小时前
大语言模型应用和训练(人工智能)
人工智能·算法·语言模型
意.远3 小时前
PyTorch参数管理详解:从访问到初始化与共享
人工智能·pytorch·python·深度学习
非优秀程序员3 小时前
分享 | 我遇到的质量最高的MCP服务器汇总
人工智能