目录
- 相同点与不同点
- cv::Mat转ncnn::Mat
-
- [cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR](#cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR)
- [cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY](#cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY)
- [cv::Mat CV_8UC1 -> ncnn::Mat 1 channel](#cv::Mat CV_8UC1 -> ncnn::Mat 1 channel)
- ncnn::Mat转cv::Ma
-
- [ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR](#ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR)
- [ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order](#ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order)
- [ncnn::Mat 1 channel -> cv::Mat CV_32FC1](#ncnn::Mat 1 channel -> cv::Mat CV_32FC1)
- [ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1](#ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1)
相同点与不同点
ncnn::Mat和cv::Mat在某些方面是相似的,但也存在一些区别。
相似之处:
ncnn::Mat和cv::Mat都是用于表示图像或矩阵数据的类。
它们都提供了类似的API,可以访问和操作图像数据。
它们都支持多种像素格式和通道数。
区别之处:
库的不同:ncnn::Mat是ncnn库中的数据类型,用于在ncnn中进行模型推理和图像处理。而cv::Mat是OpenCV库中的数据类型,用于图像处理和计算机视觉任务。
数据存储方式:ncnn::Mat使用行优先存储方式,而cv::Mat使用列优先存储方式。这意味着在访问像素时,它们的内存布局是不同的。
功能和用途:ncnn::Mat主要用于在ncnn中进行模型推理和图像处理,提供了与ncnn库相关的功能和接口。cv::Mat主要用于图像处理和计算机视觉任务,提供了丰富的图像处理和计算机视觉函数。
总结来说,ncnn::Mat和cv::Mat在用途和功能上有一些差异,但它们都用于处理图像和矩阵数据,并提供了类似的API,以便于访问和操作这些数据。
ncnn中数据的排列格式为(channel, h, w), cv::Mat中数据的排列格式为(h, w, channel).
cv::Mat转ncnn::Mat
cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR
cpp
// cv::Mat a(h, w, CV_8UC3);
ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_BGR2RGB, a.cols, a.rows);
cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY
bash
ncnn::Mat inbgr = ncnn::Mat::from_pixels(bgr.data, ncnn::Mat::PIXEL_BGR2GRAY, bgr.cols, bgr.rows);
cv::Mat CV_8UC1 -> ncnn::Mat 1 channel
bash
ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_GRAY, a.cols, a.rows);
ncnn::Mat转cv::Ma
ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR
bash
cv::Mat a(in.h, in.w, CV_8UC3);
in.to_pixels(a.data, ncnn::Mat::PIXEL_BGR2RGB);
ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order
bash
// ncnn::Mat in(w, h, 3);
cv::Mat a(in.h, in.w, CV_8UC3);
in.to_pixels(a.data, ncnn::Mat::PIXEL_RGB);
ncnn::Mat 1 channel -> cv::Mat CV_32FC1
bash
You could consume or manipulate ncnn::Mat data directly to avoid data copy
// ncnn::Mat in;
cv::Mat a(in.h, in.w, CV_32FC1);
memcpy((uchar*)a.data, in.data, in.w * in.h * sizeof(float));
ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1
bash
// ncnn::Mat in(w, h, channels);
std::vector<cv::Mat> a(in.c);
for (int p=0; p<in.c; p++)
{
a[p] = cv::Mat(in.h, in.w, CV_32FC1);
memcpy((uchar*)a[p].data, in.channel(p), in.w * in.h * sizeof(float));
}