【NCNN】NCNN中Mat与CV中Mat的使用区别及相互转换方法

目录

  • 相同点与不同点
  • cv::Mat转ncnn::Mat
    • [cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR](#cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR)
    • [cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY](#cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY)
    • [cv::Mat CV_8UC1 -> ncnn::Mat 1 channel](#cv::Mat CV_8UC1 -> ncnn::Mat 1 channel)
  • ncnn::Mat转cv::Ma
    • [ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR](#ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR)
    • [ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order](#ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order)
    • [ncnn::Mat 1 channel -> cv::Mat CV_32FC1](#ncnn::Mat 1 channel -> cv::Mat CV_32FC1)
    • [ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1](#ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1)

相同点与不同点

ncnn::Mat和cv::Mat在某些方面是相似的,但也存在一些区别。

相似之处:

ncnn::Mat和cv::Mat都是用于表示图像或矩阵数据的类。

它们都提供了类似的API,可以访问和操作图像数据。

它们都支持多种像素格式和通道数。

区别之处:

库的不同:ncnn::Mat是ncnn库中的数据类型,用于在ncnn中进行模型推理和图像处理。而cv::Mat是OpenCV库中的数据类型,用于图像处理和计算机视觉任务。

数据存储方式:ncnn::Mat使用行优先存储方式,而cv::Mat使用列优先存储方式。这意味着在访问像素时,它们的内存布局是不同的。

功能和用途:ncnn::Mat主要用于在ncnn中进行模型推理和图像处理,提供了与ncnn库相关的功能和接口。cv::Mat主要用于图像处理和计算机视觉任务,提供了丰富的图像处理和计算机视觉函数。

总结来说,ncnn::Mat和cv::Mat在用途和功能上有一些差异,但它们都用于处理图像和矩阵数据,并提供了类似的API,以便于访问和操作这些数据。

ncnn中数据的排列格式为(channel, h, w), cv::Mat中数据的排列格式为(h, w, channel).

cv::Mat转ncnn::Mat

cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR

cpp 复制代码
// cv::Mat a(h, w, CV_8UC3);
ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_BGR2RGB, a.cols, a.rows);

cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY

bash 复制代码
ncnn::Mat inbgr = ncnn::Mat::from_pixels(bgr.data, ncnn::Mat::PIXEL_BGR2GRAY, bgr.cols, bgr.rows);

cv::Mat CV_8UC1 -> ncnn::Mat 1 channel

bash 复制代码
ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_GRAY, a.cols, a.rows);

ncnn::Mat转cv::Ma

ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR

bash 复制代码
cv::Mat a(in.h, in.w, CV_8UC3);
in.to_pixels(a.data, ncnn::Mat::PIXEL_BGR2RGB);

ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order

bash 复制代码
// ncnn::Mat in(w, h, 3);
cv::Mat a(in.h, in.w, CV_8UC3);
in.to_pixels(a.data, ncnn::Mat::PIXEL_RGB);

ncnn::Mat 1 channel -> cv::Mat CV_32FC1

bash 复制代码
You could consume or manipulate ncnn::Mat data directly to avoid data copy
// ncnn::Mat in;
cv::Mat a(in.h, in.w, CV_32FC1);
memcpy((uchar*)a.data, in.data, in.w * in.h * sizeof(float));

ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1

bash 复制代码
// ncnn::Mat in(w, h, channels);
std::vector<cv::Mat> a(in.c);
for (int p=0; p<in.c; p++)
{
    a[p] = cv::Mat(in.h, in.w, CV_32FC1);
    memcpy((uchar*)a[p].data, in.channel(p), in.w * in.h * sizeof(float));
}
相关推荐
AI新兵1 小时前
AI大事记10:从对抗到创造——生成对抗网络 (GANs)
人工智能·神经网络·生成对抗网络
却道天凉_好个秋1 小时前
深度学习(十五):Dropout
人工智能·深度学习·dropout
你好~每一天2 小时前
2025 中小企业 AI 转型:核心岗技能 “怎么证、怎么用”?
人工智能·百度·数据挖掘·数据分析·职业·转行
飞哥数智坊3 小时前
3B参数差点干翻32B模型,Qwen3 Next 是如何做到的?
人工智能
人工智能技术派3 小时前
Whisper推理源码解读
人工智能·语言模型·whisper·语音识别
编码追梦人4 小时前
AI 重塑行业格局:从金融风控到智能制造的深度实践
人工智能·制造
Lululaurel4 小时前
提示工程深度解析:驾驭大语言模型的艺术与科学
人工智能·ai·aigc·提示词
simon_skywalker4 小时前
第7章 n步时序差分 n步时序差分预测
人工智能·算法·强化学习
唐兴通个人4 小时前
清华大学AI领导力AI时代领导力AI变革领导力培训师培训讲师专家唐兴通讲授数字化转型人工智能组织创新实践领导力国央企国有企业金融运营商制造业
人工智能·数据挖掘
云卓SKYDROID5 小时前
无人机定点派送技术要点与运行方式
人工智能·无人机·航电系统·高科技·云卓科技