Python爬虫实战(四):利用代理IP爬取某瓣电影排行榜并写入Excel(附上完整源码)

1. 爬虫和代理IP的关系

爬虫是指通过编写程序自动获取互联网上的信息的技术。爬虫可以模拟人的行为,在网页上浏览、点击、输入数据等,从而获取网页上的各种信息,如文本、图片、视频等。爬虫可以用于各种目的,如搜索引擎的索引、数据分析、信息监测等。

代理IP是指通过中间服务器转发网络请求的技术。在爬虫中,使用代理IP可以隐藏真实的访问源,防止被目标网站封禁或限制访问。代理IP可以分为正向代理和反向代理。正向代理是由客户端主动使用代理服务器来访问目标网站,而反向代理是目标网站使用代理服务器来处理客户端的请求。

2. 使用代理IP的好处

使用代理IP可以带来以下好处:

  1. 隐藏真实的访问源,保护个人或机构的隐私和安全。
  2. 绕过目标网站的访问限制,如IP封禁、地区限制等。
  3. 分散访问压力,提高爬取效率和稳定性。
  4. 收集不同地区或代理服务器上的数据,用于数据分析和对比。

然而,使用代理IP也存在一些挑战和注意事项:

  1. 代理IP的质量参差不齐,有些代理服务器可能不稳定、速度慢或存在安全风险。
  2. 一些目标网站会检测和封禁常用的代理IP,需要不断更换和验证代理IP的可用性。
  3. 使用代理IP可能增加网络请求的延迟和复杂性,需要合理配置和调整爬虫程序。
  4. 使用代理IP需要遵守相关法律法规和目标网站的使用规则,不得进行非法活动或滥用代理IP服务。

博主这里使用的亮数据家的动态代理IP,IP质量很高个人感觉还不错,公司用户可以免费使用:点击试用

3. 爬取目标

这次爬虫实战的目标是某瓣电影Top250排行榜,爬取的字段:排名、电影名、评分、评价人数、制片国家、电影类型、上映时间、主演、影片链接

预期效果写入Excel:

4. 准备工作

Python:3.10

编辑器:PyCharm

第三方模块,自行安装:

pip install requests # 网页数据爬取
pip install pandas # 数据处理
pip install xlwt # 写入Excel
pip install lxml # 提取网页数据

5. 爬虫实现

5.1 获取代理IP

1、打开亮数据的官网,点击立刻使用:点击试用

2、输入账号密码注册账号:

3、注册后以后点击查看代理IP产品:

4、选择适合自己ide产品,如果你使用公司邮件注册,可以找客服开通免费试用:

5、获取代理IP后通过proxies参数添加代理发送请求,案例代码:

proxies = {
  "http": "http://IP地址:端口号",   # http型
  "https": "https://IP地址:端口号"   # https型
}
response = requests.get(url,headers=headers,proxies=proxies)

5.2 导入模块

import re # 正则,用于提取字符串
import pandas as pd # pandas,用于写入Excel文件
import requests  # python基础爬虫库
from lxml import etree  # 可以将网页转换为Elements对象
import time  # 防止爬取过快可以睡眠一秒

5.3 设置翻页

首先我们来分析一下网站的翻页,一共有10页:

第一页主页为:

https://movie.douban.com/top250?start=0&filter=

第二页:

https://movie.douban.com/top250?start=25&filter=

第三页:

https://movie.douban.com/top250?start=50&filter=

可以看出每页只有start=后面的参数每次上涨25,所以用循环来构造10页网页链接:

def main():
    data_list = [] # 空列表用于存储每页获取到的数据
    for i in range(10):
        url = 'https://movie.douban.com/top250?start='+str(i*25)+'&filter='

5.4 发送请求

这里我们创建一个get_html_str(url)函数传入网页url链接,通过添加请求头和代理IP发送请求获取网页源码(注意:这里代理IP这里需要看5.1 获取代理IP自己去获取,博主的已过期):

def get_html_str(url):
    """发送请求,获取响应"""
    # 请求头模拟浏览器
    headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36'}

    # 添加代理IP(这里代理IP这里需要看`5.1 获取代理IP`自己去获取,博主的已过期)
    proxies = {
        "http": "http://183.134.17.12:9181",
    }
    # 添加请求头和代理IP发送请求
    response = requests.get(url,headers=headers,proxies=proxies)
    # 获取网页源码
    html_str = response.content.decode()
    # 返回网页源码
    return html_str

5.5 提取数据

当我们拿到网页源码后,创建一个get_data(html_str,data_list)函数传入html_str也就是网页源码、data_list用于存储数据,就可以使用xpath开始解析数据了

1、分析网页结构,可以看到每一个电影都在ol标签下的li标签下:

2、然后我们看li标签的数据是否完整,可以看到我们需要的字段都有:

3、接下来开始写解析代码:

def get_data(html_str, data_list):
    """提取数据写入列表"""
    # 将html字符串转换为etree对象方便后面使用xpath进行解析
    html_data = etree.HTML(html_str)
    # 利用xpath取到所有的li标签
    li_list = html_data.xpath("//ol[@class='grid_view']/li")
    # 打印一下li标签个数看是否和一页的电影个数对得上
    print(len(li_list))  # 输出25,没有问题
    # 遍历li_list列表取到某一个电影的对象
    for li in li_list:
        # 用xpath获取每一个字段信息
        # 排名
        ranking = li.xpath(".//div[@class='pic']/em/text()")[0]
        # 电影名
        title = li.xpath(".//div[@class='hd']/a/span[1]/text()")[0]
        # 评分
        score = li.xpath(".//span[@class='rating_num']/text()")[0]
        # 评价人数
        evaluators_number = li.xpath(".//div[@class='star']/span[4]/text()")[0]
        evaluators_number = evaluators_number.replace('人评价', '')  # 将'人评价'替换为替换为空,更美观
        # 导演、主演
        str1 = li.xpath(".//div[@class='bd']/p[1]//text()")[0]
        # 利用正则提取导演名
        try:
            director = re.findall("导演: (.*?)主演", str1)[0]
            director = re.sub('\xa0', '', director)
        except:
            director = None
        # 利用正则提取主演
        try:
            performer = re.findall("主演: (.*)", str1)[0]
            performer = re.sub('\xa0', '', performer)
        except:
            performer = None
        # 上映时间、制片国家、电影类型都在这里标签下
        str2 = li.xpath(".//div[@class='bd']/p[1]//text()")[1]
        #
        try:
            # 通过斜杠进行分割
            str2_list = str2.split(' / ')
            # 年份
            year = re.sub('[\n ]', '', str2_list[0])
            # 制片国家
            country = str2_list[1]
            # 影片类型
            type = re.sub('[\n ]', '', str2_list[2])
        except:
            year = None
            country = None
            type = None
        url = li.xpath(".//div[@class='hd']/a/@href")[0]
        print({'排名': ranking, '电影名': title, '评分': score, '评价人数': evaluators_number, '导演': director,
               '主演': performer, '年份': year, '制片国家': country, '影片类型': type, '影片主页链接': url})
        data_list.append(
            {'排名': ranking, '电影名': title, '评分': score, '评价人数': evaluators_number, '导演': director,
             '主演': performer, '年份': year, '制片国家': country, '影片类型': type, '影片主页链接': url})

运行结果:

5.6 保存数据

当我们提取完数据以后就可以写入用pandas写入Excel表格中,创建into_excel(data_list)函数,将存储数据的data_list列表作为参数传入,然后用pandas的to_excel函数写入excel表格:

def into_excel(data_list):
    # 创建DataFrame对象
    df = pd.DataFrame(data_list)
    # 写入excel文件
    df.to_excel('电影Top250排行.xlsx')

5.7 调用主函数

第一步设置翻页,然后获取网页源码,接着提取数据,限制爬取的速度,最后写入Excel文件

def main():
    data_list = []  # 空列表用于存储每页获取到的数据
    # 1. 设置翻页
    for i in range(10):
        url = 'https://movie.douban.com/top250?start=' + str(i * 25) + '&filter='
        # 2. 获取网页源码
        html_str = get_html_str(url)
        # 3. 提取数据
        get_data(html_str, data_list)
        # 4. 限制爬取的速度
        time.sleep(5)
    # 5. 写入excel
    into_excel(data_list)

5.8 完整源码

这里附上完整源码(注意:get_html_str(url)函数中的代理IP这里需要看5.1 获取代理IP自己去获取,博主的已过期),然后直接运行程序即可:

import re # 正则,用于提取字符串
import pandas as pd # pandas,用于写入Excel文件
import requests  # python基础爬虫库
from lxml import etree  # 可以将网页转换为Elements对象
import time  # 防止爬取过快可以睡眠一秒


def get_html_str(url):
    """发送请求,获取响应"""
    # 请求头模拟浏览器
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36'}

    # 添加代理IP(这里代理IP这里需要看`5.1 获取代理IP`自己去获取,博主的已过期)
    proxies = {
        "http": "http://183.134.17.12:9181",
    }
    # 添加请求头和代理IP发送请求
    response = requests.get(url, headers=headers, proxies=proxies)  #
    # 获取网页源码
    html_str = response.content.decode()
    # 返回网页源码
    return html_str


def get_data(html_str, data_list):
    """提取数据写入列表"""
    # 将html字符串转换为etree对象方便后面使用xpath进行解析
    html_data = etree.HTML(html_str)
    # 利用xpath取到所有的li标签
    li_list = html_data.xpath("//ol[@class='grid_view']/li")
    # 打印一下li标签个数看是否和一页的电影个数对得上
    print(len(li_list))  # 输出25,没有问题
    # 遍历li_list列表取到某一个电影的对象
    for li in li_list:
        # 用xpath获取每一个字段信息
        # 排名
        ranking = li.xpath(".//div[@class='pic']/em/text()")[0]
        # 电影名
        title = li.xpath(".//div[@class='hd']/a/span[1]/text()")[0]
        # 评分
        score = li.xpath(".//span[@class='rating_num']/text()")[0]
        # 评价人数
        evaluators_number = li.xpath(".//div[@class='star']/span[4]/text()")[0]
        evaluators_number = evaluators_number.replace('人评价', '')  # 将'人评价'替换为替换为空,更美观
        # 导演、主演
        str1 = li.xpath(".//div[@class='bd']/p[1]//text()")[0]
        # 利用正则提取导演名
        try:
            director = re.findall("导演: (.*?)主演", str1)[0]
            director = re.sub('\xa0', '', director)
        except:
            director = None
        # 利用正则提取主演
        try:
            performer = re.findall("主演: (.*)", str1)[0]
            performer = re.sub('\xa0', '', performer)
        except:
            performer = None
        # 上映时间、制片国家、电影类型都在这里标签下
        str2 = li.xpath(".//div[@class='bd']/p[1]//text()")[1]
        #
        try:
            # 通过斜杠进行分割
            str2_list = str2.split(' / ')
            # 年份
            year = re.sub('[\n ]', '', str2_list[0])
            # 制片国家
            country = str2_list[1]
            # 影片类型
            type = re.sub('[\n ]', '', str2_list[2])
        except:
            year = None
            country = None
            type = None
        url = li.xpath(".//div[@class='hd']/a/@href")[0]
        print({'排名': ranking, '电影名': title, '评分': score, '评价人数': evaluators_number, '导演': director,
               '主演': performer, '年份': year, '制片国家': country, '影片类型': type, '影片主页链接': url})
        data_list.append(
            {'排名': ranking, '电影名': title, '评分': score, '评价人数': evaluators_number, '导演': director,
             '主演': performer, '年份': year, '制片国家': country, '影片类型': type, '影片主页链接': url})


def into_excel(data_list):
    # 创建DataFrame对象
    df = pd.DataFrame(data_list)
    # 写入excel文件
    df.to_excel('电影Top250排行.xlsx')


def main():
    data_list = []  # 空列表用于存储每页获取到的数据
    # 1. 设置翻页
    for i in range(10):
        url = 'https://movie.douban.com/top250?start=' + str(i * 25) + '&filter='
        # 2. 获取网页源码
        html_str = get_html_str(url)
        # 3. 提取数据
        get_data(html_str, data_list)
        # 4. 限制爬取的速度
        time.sleep(5)
    # 5. 写入excel
    into_excel(data_list)


if __name__ == "__main__":
    main()

程序运行完毕后生成excel文件:

6. 获取免费定制数据

上面我们讲了如何利用Python爬虫获取数据,博主估摸着还是有很多小伙伴不知道怎么写爬虫代码,博主使用亮数据代理IP时偶然发现竟然还有免费的数据集可以下载,不会爬虫和想偷懒的小伙伴可以省事了:

1、进入亮数据官网,点击网络数据,然后点击获取获取免费样本:点击免费领取

2、输入好个人信息和需要的数据集名称后,点击提交:

3、然后等着客服免费送数据集就可以啦,欧耶:

相关推荐
查理零世27 分钟前
保姆级讲解 python之zip()方法实现矩阵行列转置
python·算法·矩阵
刀客12338 分钟前
python3+TensorFlow 2.x(四)反向传播
人工智能·python·tensorflow
sysu632 小时前
95.不同的二叉搜索树Ⅱ python
开发语言·数据结构·python·算法·leetcode·面试·深度优先
SsummerC2 小时前
【leetcode100】从前序与中序遍历序列构造二叉树
python·算法·leetcode
陌北v12 小时前
PyTorch广告点击率预测(CTR)利用深度学习提升广告效果
人工智能·pytorch·python·深度学习·ctr
Мартин.3 小时前
[Meachines] [Easy] Bashed PHP Bash+Python计划任务权限提升
python·php·bash
码界筑梦坊3 小时前
基于Flask的旅游系统的设计与实现
python·flask·毕业设计·旅游
辞落山4 小时前
自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合
python·线性回归·scikit-learn
Allen200005 小时前
wow-agent---task4 MetaGPT初体验
人工智能·python·pygame
源代码杀手8 小时前
【以音频软件FFmpeg为例】通过Python脚本将软件路径添加到Windows系统环境变量中的实现与原理分析
windows·python·音视频