机器学习:GPT3

GPT3

模型过于巨大

GPT3是T5参数量的10倍!

训练GPT3的代价是$12百万美元

Zero-shot Ability

GPT3的思想是不是能拿掉Fine-tune

只需要给定few-shot或者zero-shot就能干相应的任务了。

  • few-shot learning(no gradient descent): 给一点点的prompt
  • one-shot learning: 给一个prompt
  • zero-shot leaning:什么都不给

few-shot 是没有微调模型的,没有梯度下降,这些文字是让模型知道做什么。

将这种能力叫做"In-context Learning"

GPT3在42个任务上的表现,随着模型参数越来越大,模型性能越来越好。

相关能力

Closed Book QA

闭卷直接问,比如说喜马拉雅山的高度是多少,few-shot learning 超过了fine-tuned sota。

随着few-shot给的数量越多,性能越来越好。

GPT3也可以做生成相关的任务,比如生成文章。产生的新闻可以骗过人类。

gpt3能做数学相关的任务,使用模型的参数越大,正确率也越高,两位数的加法和两位数的减法上表现非常好,三位数的减法也不错,加法效果要差一点,更困难的就效果比较差了。

在zero-shot和one-shot效果不行,在few-shot上效果要好一点,在ANLI的任务上效果不好,即给定两个矛盾的句子,判断两个句子是否矛盾。

训练数据是从网上爬取的数据,但是无法避免爬取的内容中是否含有任务的数据,相当于拿问题的数据进行训练再来回答任务的数据。

  • clean data:gpt3没有看过这些数据
  • dirty data:gpt3有看过这些数据

Turing Advice Challenge

gpt3给建议。



与人类的建议做一些比较,效果还一般。

GPT产生图像,一行一行的产生图像。

相关推荐
程序员陆通12 分钟前
独立开发A/B测试实用教程
人工智能·ai编程
knowfoot14 分钟前
硬核拆解!跟着公式“走”一遍,你也能彻底看懂神经网络
人工智能·神经网络
FF-Studio21 分钟前
大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
人工智能·python·深度学习·神经网络·机器学习·语言模型·自然语言处理
DDDDDouble24 分钟前
<二>Sping-AI alibaba 入门-记忆聊天及持久化
java·人工智能
PyAIExplorer25 分钟前
图像处理中的插值方法:原理与实践
图像处理·人工智能
狗头大军之江苏分军35 分钟前
疑似华为盘古AI大模型翻车造假风波【实时记录篇】
人工智能·机器学习·程序员
Mr.Winter`36 分钟前
轨迹优化 | 基于激光雷达的欧氏距离场ESDF地图构建(附ROS C++仿真)
c++·人工智能·机器人·自动驾驶·ros·ros2·具身智能
机器之心2 小时前
刚刚,苹果基础模型团队负责人庞若鸣被Meta挖走!加入超级智能团队、年薪千万美元
人工智能
G.E.N.2 小时前
开源!RAG竞技场(2):标准RAG算法
大数据·人工智能·深度学习·神经网络·算法·llm·rag