机器学习:GPT3

GPT3

模型过于巨大

GPT3是T5参数量的10倍!

训练GPT3的代价是$12百万美元

Zero-shot Ability

GPT3的思想是不是能拿掉Fine-tune

只需要给定few-shot或者zero-shot就能干相应的任务了。

  • few-shot learning(no gradient descent): 给一点点的prompt
  • one-shot learning: 给一个prompt
  • zero-shot leaning:什么都不给

few-shot 是没有微调模型的,没有梯度下降,这些文字是让模型知道做什么。

将这种能力叫做"In-context Learning"

GPT3在42个任务上的表现,随着模型参数越来越大,模型性能越来越好。

相关能力

Closed Book QA

闭卷直接问,比如说喜马拉雅山的高度是多少,few-shot learning 超过了fine-tuned sota。

随着few-shot给的数量越多,性能越来越好。

GPT3也可以做生成相关的任务,比如生成文章。产生的新闻可以骗过人类。

gpt3能做数学相关的任务,使用模型的参数越大,正确率也越高,两位数的加法和两位数的减法上表现非常好,三位数的减法也不错,加法效果要差一点,更困难的就效果比较差了。

在zero-shot和one-shot效果不行,在few-shot上效果要好一点,在ANLI的任务上效果不好,即给定两个矛盾的句子,判断两个句子是否矛盾。

训练数据是从网上爬取的数据,但是无法避免爬取的内容中是否含有任务的数据,相当于拿问题的数据进行训练再来回答任务的数据。

  • clean data:gpt3没有看过这些数据
  • dirty data:gpt3有看过这些数据

Turing Advice Challenge

gpt3给建议。



与人类的建议做一些比较,效果还一般。

GPT产生图像,一行一行的产生图像。

相关推荐
一休哥助手1 小时前
2026年1月29日人工智能早间新闻
人工智能
企业老板ai培训2 小时前
从九尾狐AI案例拆解企业AI培训的技术实现与降本增效架构
人工智能
Elastic 中国社区官方博客8 小时前
使用 Discord 和 Elastic Agent Builder A2A 构建游戏社区支持机器人
人工智能·elasticsearch·游戏·搜索引擎·ai·机器人·全文检索
张祥6422889048 小时前
误差理论与测量平差基础笔记十
笔记·算法·机器学习
2501_933329558 小时前
企业级AI舆情中台架构实践:Infoseek系统如何实现亿级数据实时监测与智能处置?
人工智能·架构
阿杰学AI8 小时前
AI核心知识70——大语言模型之Context Engineering(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·数据处理·上下文工程
赛博鲁迅9 小时前
物理AI元年:AI走出屏幕进入现实,88API为机器人装上“最强大脑“
人工智能·机器人
管牛牛9 小时前
图像的卷积操作
人工智能·深度学习·计算机视觉
云卓SKYDROID9 小时前
无人机航线辅助模块技术解析
人工智能·无人机·高科技·云卓科技