数据可视化(3)

1.饼状图

python 复制代码
#饼状图
#pie(x,labels,colors,labeldistance,autopct,startangle,radius,center,textprops)
#x,每一块饼状图的比例
#labels:每一块饼形图外侧显示的文字说明
#labeldistance:标记的绘制位置,相对于半径的比例,默认值为1:1
#autopct:设置饼图百分比,可以使用格式化字符串或format函数
#startangle:起始绘制角度,默认是x轴正方向逆时针画起
#radius饼图半径,默认值1
#center:浮点类型的列表,可选参数,默认值为(0,0)表示图表中心的位置
#textprops:设置标签和比例文字的格式,字典类型

x=[10,34,5,56,58,65]
plt.pie(x,autopct='%1.1f%%')
plt.show()

2.基础饼图

python 复制代码
#基础饼状图
df=pd.read_excel('收集销售.xlsx')
#解决乱码
plt.rcParams['font.sans-serif']=['SimHei']
x=df['北京出库销量']
labels=df['商品名称']
plt.figure(figsize=(10,6))
#设置x,y轴刻度一致
plt.axis('equal')

plt.title('手机品牌出库销售分析')
#设置图例
#frameon设置边框
plt.legend(df['商品名称'],loc='upper left',frameon=False)
plt.pie(x,labels=labels,autopct='%1.1f%%',labeldistance=1.02,startangle=90,textprops={'fontsize':12})
plt.show()

3.分裂饼图

python 复制代码
#分裂饼状图
df=pd.read_excel('收集销售.xlsx')
#解决乱码
plt.rcParams['font.sans-serif']=['SimHei']
x=df['北京出库销量']
labels=df['商品名称']
plt.figure(figsize=(10,6))
#设置x,y轴刻度一致
plt.axis('equal')

plt.title('手机品牌出库销售分析')
#设置图例
#frameon设置边框
plt.legend(df['商品名称'],loc='upper left',frameon=False)
#通过explode设置饼图的距离,达到分裂的效果
#shadow加阴影
plt.pie(x,labels=labels,autopct='%1.1f%%',labeldistance=1.02,startangle=90,textprops={'fontsize':12},
        explode=(0,1,0,0,0,0,0,0,0,0,0),shadow=True)
plt.show()

4.环形饼图

python 复制代码
#环形饼状图
df=pd.read_excel('收集销售.xlsx')
#解决乱码
plt.rcParams['font.sans-serif']=['SimHei']
x=df['北京出库销量']
x2=df['上海出库销量']
labels=df['商品名称']
plt.figure(figsize=(10,6))
#设置x,y轴刻度一致
plt.axis('equal')

plt.title('北京和上海各手机品牌出库销售分析')
#设置图例
#frameon设置边框
plt.legend(df['商品名称'],loc='upper left',frameon=False)
#通过wedgeprops参数设置环形饼图
#pctdistance设置距离,
plt.pie(x,labels=labels,autopct='%1.1f%%',labeldistance=1.02,startangle=90,textprops={'fontsize':12},
        radius=1,pctdistance=0.85,wedgeprops={'width':0.4,'edgecolor':'k'})
plt.pie(x2,autopct='%1.1f%%',labeldistance=1.02,startangle=90,textprops={'fontsize':12},
        radius=0.7,pctdistance=0.85,wedgeprops={'width':0.4,'edgecolor':'w'})
plt.show()
相关推荐
Gyoku Mint2 天前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
搏博4 天前
将图形可视化工具的 Python 脚本打包为 Windows 应用程序
开发语言·windows·python·matplotlib·数据可视化
Code_流苏7 天前
Python趣学篇:交互式词云生成器(jieba + Tkinter + WordCloud等)
python·pillow·matplotlib·tkinter·wordcloud·jieba分词·词云生成器
AndrewHZ9 天前
【图像处理入门】2. Python中OpenCV与Matplotlib的图像操作指南
图像处理·python·opencv·计算机视觉·matplotlib·图像操作
无闻墨客10 天前
数据可视化--使用matplotlib绘制高级图表
python·机器学习·信息可视化·matplotlib·可视化·数据可视化
Echo-J11 天前
数据可视化(第4、5、6次课)
python·信息可视化·matplotlib·数据可视化
ayas1231913 天前
numpy与matplotlib学习——数据可视化入门
学习·numpy·matplotlib
zhangfeng113314 天前
Python 和 matplotlib 保存图像时,确保图像的分辨率和像素符合特定要求(如 64x64),批量保存 不溢出内存
开发语言·python·matplotlib
李昊哲小课17 天前
matplotlib基本绘图
人工智能·数据分析·matplotlib·数据可视化·pyecharts·seaborn
云攀登者-望正茂17 天前
如何在Mac 上使用Python Matplotlib
python·macos·matplotlib