数据可视化(3)

1.饼状图

python 复制代码
#饼状图
#pie(x,labels,colors,labeldistance,autopct,startangle,radius,center,textprops)
#x,每一块饼状图的比例
#labels:每一块饼形图外侧显示的文字说明
#labeldistance:标记的绘制位置,相对于半径的比例,默认值为1:1
#autopct:设置饼图百分比,可以使用格式化字符串或format函数
#startangle:起始绘制角度,默认是x轴正方向逆时针画起
#radius饼图半径,默认值1
#center:浮点类型的列表,可选参数,默认值为(0,0)表示图表中心的位置
#textprops:设置标签和比例文字的格式,字典类型

x=[10,34,5,56,58,65]
plt.pie(x,autopct='%1.1f%%')
plt.show()

2.基础饼图

python 复制代码
#基础饼状图
df=pd.read_excel('收集销售.xlsx')
#解决乱码
plt.rcParams['font.sans-serif']=['SimHei']
x=df['北京出库销量']
labels=df['商品名称']
plt.figure(figsize=(10,6))
#设置x,y轴刻度一致
plt.axis('equal')

plt.title('手机品牌出库销售分析')
#设置图例
#frameon设置边框
plt.legend(df['商品名称'],loc='upper left',frameon=False)
plt.pie(x,labels=labels,autopct='%1.1f%%',labeldistance=1.02,startangle=90,textprops={'fontsize':12})
plt.show()

3.分裂饼图

python 复制代码
#分裂饼状图
df=pd.read_excel('收集销售.xlsx')
#解决乱码
plt.rcParams['font.sans-serif']=['SimHei']
x=df['北京出库销量']
labels=df['商品名称']
plt.figure(figsize=(10,6))
#设置x,y轴刻度一致
plt.axis('equal')

plt.title('手机品牌出库销售分析')
#设置图例
#frameon设置边框
plt.legend(df['商品名称'],loc='upper left',frameon=False)
#通过explode设置饼图的距离,达到分裂的效果
#shadow加阴影
plt.pie(x,labels=labels,autopct='%1.1f%%',labeldistance=1.02,startangle=90,textprops={'fontsize':12},
        explode=(0,1,0,0,0,0,0,0,0,0,0),shadow=True)
plt.show()

4.环形饼图

python 复制代码
#环形饼状图
df=pd.read_excel('收集销售.xlsx')
#解决乱码
plt.rcParams['font.sans-serif']=['SimHei']
x=df['北京出库销量']
x2=df['上海出库销量']
labels=df['商品名称']
plt.figure(figsize=(10,6))
#设置x,y轴刻度一致
plt.axis('equal')

plt.title('北京和上海各手机品牌出库销售分析')
#设置图例
#frameon设置边框
plt.legend(df['商品名称'],loc='upper left',frameon=False)
#通过wedgeprops参数设置环形饼图
#pctdistance设置距离,
plt.pie(x,labels=labels,autopct='%1.1f%%',labeldistance=1.02,startangle=90,textprops={'fontsize':12},
        radius=1,pctdistance=0.85,wedgeprops={'width':0.4,'edgecolor':'k'})
plt.pie(x2,autopct='%1.1f%%',labeldistance=1.02,startangle=90,textprops={'fontsize':12},
        radius=0.7,pctdistance=0.85,wedgeprops={'width':0.4,'edgecolor':'w'})
plt.show()
相关推荐
孤客网络科技工作室3 小时前
在 Jupyter Notebook 中使用 Matplotlib 进行交互式可视化的教程
ide·jupyter·matplotlib
叫我:松哥4 天前
基于python的天气数据采集与可视化分析,对20个城市的天气适宜出行度分析
开发语言·爬虫·python·数据分析·matplotlib·数据可视化·天气
小鹿( ﹡ˆoˆ﹡ )6 天前
Matplotlib 绘图艺术:从新手到高手的全面指南
python·matplotlib
Pfolg8 天前
画动态爱心(Python-matplotlib)
python·matplotlib
chusheng184011 天前
Python 如何在 Web 环境中使用 Matplotlib 进行数据可视化
python·信息可视化·matplotlib
chusheng184013 天前
Python Matplotlib:基本图表绘制指南
python·信息可视化·matplotlib
Python大数据分析@14 天前
Python中除了matplotlib外还有哪些数据可视化的库?
python·信息可视化·matplotlib
敲代码不忘补水14 天前
Pandas 数据可视化指南:从散点图到面积图的全面展示
python·信息可视化·数据分析·numpy·pandas·matplotlib
萧鼎15 天前
Python中的数据可视化:Matplotlib基础与高级技巧
python·信息可视化·matplotlib
像风一样自由202017 天前
如何使用 NumPy 和 Matplotlib 进行数据可视化
信息可视化·numpy·matplotlib