2023.7.26(同余方程的通解与特解)

Water(扩欧求特解与通解)

题意:给容量分别为A与B的水杯,问确切喝到C水的最小操作次数

有4种操作:选一杯全喝,选一杯全部倒掉,选一杯装满,将一杯的水尽量倒到另一杯中

思路:只有Ax+By=C有解时才能确切喝到X水

裴蜀定理:如果a、b是整数,那么一定存在整数x、y使得ax+by=k*gcd(a,b)。

思路:要求x,y的特解,可以使用exgcd的板子,令c = k * gcd(A, B)则Ax + By = c;exgcd求出来的是k = 1时的特解

只要将x *= c / gcd(A, B), y *= c / gcd(A, B);此时x和y就是方程Ax + By = c的特解

这里有一个步长的概念对于x他的步长是 B / gcd(A, B), 对于y他的步长是 A / gcd(A, B)

要求最小整数解,只需要把x除上他的步长就能知道x要走多少步才能最接近0,再把x -= 步长 * 步数就可以让x最接近0,然

后在对原点附近的 (x​+t⋅步长,y​−t⋅步长)求min⁡即可得到最小整数解

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;

#define endl '\n'
#define ios ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
typedef pair<int, int> pr;

#define int long long
#define ll long long
#define fr(i,l,r) for(int i=l;i<=r;i++)
#define ufr(i,n,z) for(int i = n;i >= z; i--)
#define pb(x) push_back(x)
#define all(a) a.begin(),a.end()
#define fi first
#define se second

const int N = 1e6 + 10;
const int mod = 998244353, inf = LONG_LONG_MAX;
int dx[] = { 0,0,-1,0,1 }, dy[] = { 0,-1,0,1,0 };
int n, m;

int a[N];
int gcd(int a, int b) {         //辗转相除
    return !b ? a : gcd(b, a % b);
}
int exgcd(int a, int b, int& x, int& y)       //扩欧板子
{
    if (b == 0) {
        x = 1; y = 0;
        return a;  //到达递归边界开始向上一层返回
    }
    ll d = exgcd(b, a % b, y, x);
    y -= (a / b) * x;
    return d;
}
void solve()
{
    int a, b, c;
    cin >> a >> b >> c;
    if (c % gcd(a, b) != 0) {
        cout << -1 << '\n';                  //无解
    }
    else {
        int x, y;
        int d = exgcd(a, b, x, y);
        x *= c / d; y *= c / d;                    //特解(除去最大公约数乘上C)
        int dx = b / d; int dy = a / d;
        y += (x / dx) * dy;
        x -= (x / dx) * dx;       //最小整数解,只需要把x除上他的步长就能知道x要走多少步才能最接近0
        int ans = inf;
        fr(i, -10, 10) {
            int xx = x + dx * i; int yy = y - dy * i;           //通解
            ans = min(ans, max((xx + yy) << 1, (abs(xx - yy) << 1) - 1));
        }
        cout << ans << '\n';
    }
}

signed main()
{
    //    ios;
    int t = 1;
    cin >> t;
    while (t--) solve();
    return 0;
}

P1082 [NOIP2012 提高组] 同余方程

题意:求ax->1(mod b)的最小整数解,输入数据保证一定有解。

转变为ax=1+by,移项ax-by=1,

扩欧求的特解x/d,y/d,

通解x/d-i*(x/d/b/d)*b/d->x/d-x/b*(b/d)->x/d-i*x/d

cpp 复制代码
#include<iostream>
#define int long long
using namespace std;
int exgcd(int a, int b, int& x, int& y) {
    if (b == 0) {
        x = 1, y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= (a / b) * x;
    return d;
}
signed main(){
    int a, b;
    int x, y;
    cin >> a >> b;
    exgcd(a, b, x, y);
    cout << (x % b + b) % b << '\n';
    return 0;
}
相关推荐
mixboot1 小时前
macOS Homebrew 安装 Nmap
macos·nmap
Dream-Y.ocean5 小时前
告别设备束缚!网易 UU 远程 Mac 被控体验:免费高清 + 多场景丝滑,跨端办公刚需神器
macos
❀͜͡傀儡师16 小时前
docker安装mac系统
macos·docker·容器
库奇噜啦呼1 天前
【iOS】多线程学习
macos·ios·cocoa
守城小轩1 天前
Chromium 140 编译指南 macOS 篇:基础环境准备(一)
chrome·macos·chrome devtools·指纹浏览器·浏览器开发·超级浏览器
许泽宇的技术分享1 天前
用 OpenAI Whisper + pyannote.audio 打造“谁在说什么”的全栈语音理解系统
macos·whisper·xcode
游戏开发爱好者81 天前
iOS 商店上架全流程解析 从工程准备到审核通过的系统化实践指南
android·macos·ios·小程序·uni-app·cocoa·iphone
_可乐无糖1 天前
活到老学到老之yt-dlp_macos(二)
macos
hai-chu1 天前
将 Neo4j 安装为 macOS 服务
macos·策略模式·neo4j
远程软件小帮手1 天前
UU远程上线mac被控!如何远程控制 macOS 设备办公?
游戏·macos·智能手机·电脑