PyTorch中级教程:深入理解自动求导和优化

在你已经掌握了如何使用PyTorch构建神经网络的基础上,接下来我们将深入探讨PyTorch的两个核心特性:自动求导(Autograd)和优化(Optimization)。这两个特性在深度学习模型的训练过程中起着至关重要的作用。

一、自动求导

在PyTorch中,所有神经网络的核心是autograd包。先简单理解这个包,然后我们会去训练我们的第一个神经网络。

autograd包提供了所有张量上的自动求导操作。它是一个在运行时定义的框架,这意味着你的反向传播是由你的代码运行方式决定的,因此每次迭代可以不同。

让我们通过一些简单的例子来更好地理解这个概念:

python 复制代码
import torch

# 创建一个张量并设置requires_grad=True来追踪与它相关的计算
x = torch.ones(2, 2, requires_grad=True)
print(x)

# 对张量进行操作
y = x + 2
print(y)

# 因为y是操作的结果,所以它有grad_fn属性
print(y.grad_fn)

# 对y进行更多操作
z = y * y * 3
out = z.mean()

print(z, out)

二、梯度

我们可以通过调用.backward()来进行反向传播,计算梯度:

python 复制代码
out.backward()

# 输出梯度 d(out)/dx
print(x.grad)

三、训练模型

在定义神经网络后,我们可以将数据输入到网络中,并使用反向传播计算梯度。然后使用优化器更新网络的权重:

python 复制代码
import torch.optim as optim

# 创建优化器(随机梯度下降)
optimizer = optim.SGD(net.parameters(), lr=0.01)

# 在训练循环中:
optimizer.zero_grad()   # 清零梯度缓存
output = net(input)     # 输入数据并得到输出
loss = criterion(output, target)   # 计算损失函数
loss.backward()     # 反向传播
optimizer.step()    # 更新权重

到此,你已经了解了如何在PyTorch中使用自动求导和优化器进行模型训练。在实际使用中,你会发现这两个特性极大地简化了训练过程,使得PyTorch在深度学习框架中备受青睐。

相关推荐
WSSWWWSSW2 小时前
Seaborn数据可视化实战:Seaborn数据可视化基础-从内置数据集到外部数据集的应用
python·信息可视化·数据分析·matplotlib·seaborn
Small___ming2 小时前
Matplotlib 可视化大师系列(七):专属篇 - 绘制误差线、等高线与更多特殊图表
python·信息可视化·matplotlib
ningqw4 小时前
SpringBoot 常用跨域处理方案
java·后端·springboot
你的人类朋友4 小时前
vi编辑器命令常用操作整理(持续更新)
后端
荼蘼4 小时前
CUDA安装,pytorch库安装
人工智能·pytorch·python
胡gh4 小时前
简单又复杂,难道只能说一个有箭头一个没箭头?这种问题该怎么回答?
javascript·后端·面试
一只叫煤球的猫5 小时前
看到同事设计的表结构我人麻了!聊聊怎么更好去设计数据库表
后端·mysql·面试
uzong5 小时前
技术人如何对客做好沟通(上篇)
后端
杨荧5 小时前
基于Python的农作物病虫害防治网站 Python+Django+Vue.js
大数据·前端·vue.js·爬虫·python
骑驴看星星a5 小时前
数学建模--Topsis(Python)
开发语言·python·学习·数学建模