347. 前 K 个高频元素

力扣题目链接

(opens new window)

给定一个非空的整数数组,返回其中出现频率前 k 高的元素。

示例 1:

  • 输入: nums = [1,1,1,2,2,3], k = 2
  • 输出: [1,2]

示例 2:

  • 输入: nums = [1], k = 1
  • 输出: [1]

提示:

  • 你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。
  • 你的算法的时间复杂度必须优于 O(n \\log n) , n 是数组的大小。
  • 题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的。
  • 你可以按任意顺序返回答案。

这道题目主要涉及到如下三块内容:

  1. 要统计元素出现频率
  2. 对频率排序
  3. 找出前K个高频元素

首先统计元素出现的频率,这一类的问题可以使用map来进行统计。

然后是对频率进行排序,这里我们可以使用一种 容器适配器就是优先级队列

代码

java 复制代码
/*Comparator接口说明:
 * 返回负数,形参中第一个参数排在前面;返回正数,形参中第二个参数排在前面
 * 对于队列:排在前面意味着往队头靠
 * 对于堆(使用PriorityQueue实现):从队头到队尾按从小到大排就是最小堆(小顶堆),
 *                                从队头到队尾按从大到小排就是最大堆(大顶堆)--->队头元素相当于堆的根节点
 * */
class Solution {
    //解法1:基于大顶堆实现
    public int[] topKFrequent1(int[] nums, int k) {
        Map<Integer,Integer> map = new HashMap<>();//key为数组元素值,val为对应出现次数
        for(int num:nums){
            map.put(num,map.getOrDefault(num,0)+1);
        }
        //在优先队列中存储二元组(num,cnt),cnt表示元素值num在数组中的出现次数
        //出现次数按从队头到队尾的顺序是从大到小排,出现次数最多的在队头(相当于大顶堆)
        PriorityQueue<int[]> pq = new PriorityQueue<>((pair1, pair2)->pair2[1]-pair1[1]);
        for(Map.Entry<Integer,Integer> entry:map.entrySet()){//大顶堆需要对所有元素进行排序
            pq.add(new int[]{entry.getKey(),entry.getValue()});
        }
        int[] ans = new int[k];
        for(int i=0;i<k;i++){//依次从队头弹出k个,就是出现频率前k高的元素
            ans[i] = pq.poll()[0];
        }
        return ans;
    }
    //解法2:基于小顶堆实现
    public int[] topKFrequent2(int[] nums, int k) {
        Map<Integer,Integer> map = new HashMap<>();//key为数组元素值,val为对应出现次数
        for(int num:nums){
            map.put(num,map.getOrDefault(num,0)+1);
        }
        //在优先队列中存储二元组(num,cnt),cnt表示元素值num在数组中的出现次数
        //出现次数按从队头到队尾的顺序是从小到大排,出现次数最低的在队头(相当于小顶堆)
        PriorityQueue<int[]> pq = new PriorityQueue<>((pair1,pair2)->pair1[1]-pair2[1]);
        for(Map.Entry<Integer,Integer> entry:map.entrySet()){//小顶堆只需要维持k个元素有序
            if(pq.size()<k){//小顶堆元素个数小于k个时直接加
                pq.add(new int[]{entry.getKey(),entry.getValue()});
            }else{
                if(entry.getValue()>pq.peek()[1]){//当前元素出现次数大于小顶堆的根结点(这k个元素中出现次数最少的那个)
                    pq.poll();//弹出队头(小顶堆的根结点),即把堆里出现次数最少的那个删除,留下的就是出现次数多的了
                    pq.add(new int[]{entry.getKey(),entry.getValue()});
                }
            }
        }
        int[] ans = new int[k];
        for(int i=k-1;i>=0;i--){//依次弹出小顶堆,先弹出的是堆的根,出现次数少,后面弹出的出现次数多
            ans[i] = pq.poll()[0];
        }
        return ans;
    }
}

简化版代码:

java 复制代码
class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        // 优先级队列,为了避免复杂 api 操作,pq 存储数组
        // lambda 表达式设置优先级队列从大到小存储 o1 - o2 为从大到小,o2 - o1 反之
        PriorityQueue<int[]> pq = new PriorityQueue<>((o1, o2) -> o1[1] - o2[1]);
        int[] res = new int[k]; // 答案数组为 k 个元素
        Map<Integer, Integer> map = new HashMap<>(); // 记录元素出现次数
        for(int num : nums) map.put(num, map.getOrDefault(num, 0) + 1);
        for(var x : map.entrySet()) { // entrySet 获取 k-v Set 集合
            // 将 kv 转化成数组
            int[] tmp = new int[2];
            tmp[0] = x.getKey();
            tmp[1] = x.getValue();
            pq.offer(tmp);
            if(pq.size() > k) {
                pq.poll();
            }
        }
        for(int i = 0; i < k; i ++) {
            res[i] = pq.poll()[0]; // 获取优先队列里的元素
        }
        return res;
    }
}
相关推荐
Moss Huang4 小时前
docker-runc not installed on system
java·docker·容器
麦兜*6 小时前
Spring Boot 集成 Docker 构建与发版完整指南
java·spring boot·后端·spring·docker·系统架构·springcloud
Cisyam^6 小时前
Go环境搭建实战:告别Java环境配置的复杂
java·开发语言·golang
Greedy Alg6 小时前
LeetCode 239. 滑动窗口最大值
数据结构·算法·leetcode
CHENFU_JAVA6 小时前
使用EasyExcel实现Excel单元格保护:自由锁定表头和数据行
java·excel
空白到白7 小时前
机器学习-KNN算法
人工智能·算法·机器学习
闪电麦坤957 小时前
数据结构:排序算法的评判标准(Criteria Used For Analysing Sorts)
数据结构·算法·排序算法
爱coding的橙子7 小时前
每日算法刷题Day65:8.27:leetcode dfs11道题,用时2h30min
算法·leetcode·深度优先
不懂机器人8 小时前
linux网络编程-----TCP服务端并发模型(epoll)
linux·网络·tcp/ip·算法