【朴素贝叶斯-新闻主题分类】

朴素贝叶斯对新闻进行分类

朴素贝叶斯算法是一种常用的文本分类方法,特别适用于自然语言处理任务,如新闻分类。在这篇博客中,我们将使用Python的scikit-learn库来实现朴素贝叶斯算法,并将其应用于新闻分类任务。

数据准备

首先,我们需要下载新闻数据集并进行数据准备。在这里,我们使用scikit-learn中的20个新闻组数据集,其中包含20个不同主题的新闻文本。我们从互联网上下载所有数据,并将其划分为训练集和测试集。

python 复制代码
from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split

# 从互联网上下载所有数据
news = fetch_20newsgroups(subset='all')

# 进行数据分割
x_train, x_test, y_train, y_test = train_test_split(news.data, news.target)

特征抽取

在进行文本分类任务时,我们需要将文本数据转换为可供机器学习算法使用的数字特征。这里我们使用TfidfVectorizer来将文本转换为TF-IDF特征向量,它考虑了词频和逆文档频率,能够更好地表示词的重要性。

python 复制代码
from sklearn.feature_extraction.text import TfidfVectorizer

# 对数据集进行特征抽取
transformer = TfidfVectorizer()
x_train = transformer.fit_transform(x_train)
x_test = transformer.transform(x_test)

构建朴素贝叶斯分类器

接下来,我们使用朴素贝叶斯算法来构建分类器。在scikit-learn中,我们可以使用MultinomialNB类来实现多项式朴素贝叶斯分类器。我们使用默认配置初始化分类器,并使用训练数据进行拟合。

python 复制代码
from sklearn.naive_bayes import MultinomialNB

# 使用默认配置初始化朴素贝叶斯分类器
estimator = MultinomialNB()
estimator.fit(x_train, y_train)

模型评估

现在,我们的朴素贝叶斯分类器已经训练好了,接下来我们使用测试数据进行预测,并对分类器性能进行评估。我们可以使用准确率来衡量分类器在测试数据上的性能。

python 复制代码
# 进行模型评估
y_predict = estimator.predict(x_test)
print("y_predict:\n", y_predict)
print("直接比对真实值和预测值:\n", y_test == y_predict)

# 计算准确率
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)
相关推荐
万邦科技Lafite29 分钟前
利用淘宝开放API接口监控商品状态,掌握第一信息
大数据·python·电商开放平台·开放api接口·淘宝开放平台
野渡拾光1 小时前
【考研408数据结构-05】 串与KMP算法:模式匹配的艺术
数据结构·考研·算法
Hy行者勇哥2 小时前
Python 与 VS Code 结合操作指南
开发语言·python
大力水手(Popeye)2 小时前
Pytorch——tensor
人工智能·pytorch·python
tainshuai3 小时前
用 KNN 算法解锁分类的奥秘:从电影类型到鸢尾花开
算法·分类·数据挖掘
飞翔的佩奇7 小时前
【完整源码+数据集+部署教程】表盘指针检测系统源码和数据集:改进yolo11-CA-HSFPN
python·yolo·计算机视觉·数据集·yolo11·表盘指针检测
larance7 小时前
SQLAlchemy 的异步操作来批量保存对象列表
数据库·python
搏博8 小时前
基于Python3.10.6与jieba库的中文分词模型接口在Windows Server 2022上的实现与部署教程
windows·python·自然语言处理·flask·中文分词
lxmyzzs9 小时前
pyqt5无法显示opencv绘制文本和掩码信息
python·qt·opencv
Coovally AI模型快速验证9 小时前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机