【朴素贝叶斯-新闻主题分类】

朴素贝叶斯对新闻进行分类

朴素贝叶斯算法是一种常用的文本分类方法,特别适用于自然语言处理任务,如新闻分类。在这篇博客中,我们将使用Python的scikit-learn库来实现朴素贝叶斯算法,并将其应用于新闻分类任务。

数据准备

首先,我们需要下载新闻数据集并进行数据准备。在这里,我们使用scikit-learn中的20个新闻组数据集,其中包含20个不同主题的新闻文本。我们从互联网上下载所有数据,并将其划分为训练集和测试集。

python 复制代码
from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split

# 从互联网上下载所有数据
news = fetch_20newsgroups(subset='all')

# 进行数据分割
x_train, x_test, y_train, y_test = train_test_split(news.data, news.target)

特征抽取

在进行文本分类任务时,我们需要将文本数据转换为可供机器学习算法使用的数字特征。这里我们使用TfidfVectorizer来将文本转换为TF-IDF特征向量,它考虑了词频和逆文档频率,能够更好地表示词的重要性。

python 复制代码
from sklearn.feature_extraction.text import TfidfVectorizer

# 对数据集进行特征抽取
transformer = TfidfVectorizer()
x_train = transformer.fit_transform(x_train)
x_test = transformer.transform(x_test)

构建朴素贝叶斯分类器

接下来,我们使用朴素贝叶斯算法来构建分类器。在scikit-learn中,我们可以使用MultinomialNB类来实现多项式朴素贝叶斯分类器。我们使用默认配置初始化分类器,并使用训练数据进行拟合。

python 复制代码
from sklearn.naive_bayes import MultinomialNB

# 使用默认配置初始化朴素贝叶斯分类器
estimator = MultinomialNB()
estimator.fit(x_train, y_train)

模型评估

现在,我们的朴素贝叶斯分类器已经训练好了,接下来我们使用测试数据进行预测,并对分类器性能进行评估。我们可以使用准确率来衡量分类器在测试数据上的性能。

python 复制代码
# 进行模型评估
y_predict = estimator.predict(x_test)
print("y_predict:\n", y_predict)
print("直接比对真实值和预测值:\n", y_test == y_predict)

# 计算准确率
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)
相关推荐
Amelia1111112 分钟前
day41
python
@Luminescence2 分钟前
conda指令汇总及入门(持续更新ing)
python·conda
秃了也弱了。2 分钟前
python实现离线文字转语音:pyttsx3 库
开发语言·python
可触的未来,发芽的智生5 分钟前
2025年终总结:智能涌现的思考→放弃冯诺依曼架构范式,拥抱“约束产生智能”
javascript·人工智能·python·神经网络·程序人生
UID96227 分钟前
[特殊字符] 无级变速传动(CVT)技术突破之道 | 易经×数学×工程的跨维度破解方案
算法·数学建模·开源
生信碱移14 分钟前
神经网络单细胞预后分析:这个方法直接把 TCGA 预后模型那一套迁移到单细胞与空转数据上了!竟然还能做模拟敲除与预后靶点筛选?!
人工智能·深度学习·神经网络·算法·机器学习·数据挖掘·数据分析
WoY202020 分钟前
conda修改镜像源遇到的问题:defaults(默认镜像源)清不干净导致创建环境失败
linux·python·conda
yugi98783825 分钟前
MFCC特征提取与SVM训练语音识别
算法·支持向量机·语音识别
渡我白衣27 分钟前
计算机组成原理(11):加法器
python·机器学习·numpy·pandas·matplotlib·计组·数电
yuanmenghao28 分钟前
MSAC 算法详解以及与 RANSAC 对比示例
算法·自动驾驶·聚类·ransac·msac·系统辨识‘