【朴素贝叶斯-新闻主题分类】

朴素贝叶斯对新闻进行分类

朴素贝叶斯算法是一种常用的文本分类方法,特别适用于自然语言处理任务,如新闻分类。在这篇博客中,我们将使用Python的scikit-learn库来实现朴素贝叶斯算法,并将其应用于新闻分类任务。

数据准备

首先,我们需要下载新闻数据集并进行数据准备。在这里,我们使用scikit-learn中的20个新闻组数据集,其中包含20个不同主题的新闻文本。我们从互联网上下载所有数据,并将其划分为训练集和测试集。

python 复制代码
from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split

# 从互联网上下载所有数据
news = fetch_20newsgroups(subset='all')

# 进行数据分割
x_train, x_test, y_train, y_test = train_test_split(news.data, news.target)

特征抽取

在进行文本分类任务时,我们需要将文本数据转换为可供机器学习算法使用的数字特征。这里我们使用TfidfVectorizer来将文本转换为TF-IDF特征向量,它考虑了词频和逆文档频率,能够更好地表示词的重要性。

python 复制代码
from sklearn.feature_extraction.text import TfidfVectorizer

# 对数据集进行特征抽取
transformer = TfidfVectorizer()
x_train = transformer.fit_transform(x_train)
x_test = transformer.transform(x_test)

构建朴素贝叶斯分类器

接下来,我们使用朴素贝叶斯算法来构建分类器。在scikit-learn中,我们可以使用MultinomialNB类来实现多项式朴素贝叶斯分类器。我们使用默认配置初始化分类器,并使用训练数据进行拟合。

python 复制代码
from sklearn.naive_bayes import MultinomialNB

# 使用默认配置初始化朴素贝叶斯分类器
estimator = MultinomialNB()
estimator.fit(x_train, y_train)

模型评估

现在,我们的朴素贝叶斯分类器已经训练好了,接下来我们使用测试数据进行预测,并对分类器性能进行评估。我们可以使用准确率来衡量分类器在测试数据上的性能。

python 复制代码
# 进行模型评估
y_predict = estimator.predict(x_test)
print("y_predict:\n", y_predict)
print("直接比对真实值和预测值:\n", y_test == y_predict)

# 计算准确率
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)
相关推荐
naruto_lnq17 小时前
C++与自动驾驶系统
开发语言·c++·算法
康谋自动驾驶17 小时前
高校自动驾驶研究新基建:“实测 - 仿真” 一体化数据采集与验证平台
人工智能·机器学习·自动驾驶·科研·数据采集·时间同步·仿真平台
啊阿狸不会拉杆17 小时前
《数字信号处理》第6章:数字滤波器的基本概念及几种特殊滤波器
算法·matlab·信号处理·数字信号处理·dsp
diediedei17 小时前
持续集成/持续部署(CI/CD) for Python
jvm·数据库·python
砚边数影17 小时前
决策树实战:基于 KingbaseES 的鸢尾花分类 —— 模型可视化输出
java·数据库·决策树·机器学习·分类·金仓数据库
weixin_4454023017 小时前
Python游戏中的碰撞检测实现
jvm·数据库·python
放荡不羁的野指针17 小时前
leetcode150题-双指针
数据结构·算法·leetcode
_ziva_17 小时前
Layer Normalization 全解析:LLMs 训练稳定的核心密码
人工智能·机器学习·自然语言处理
棒棒的皮皮17 小时前
【OpenCV】Python图像处理矩特征之矩的计算/计算轮廓的面积
图像处理·python·opencv·计算机视觉
轻览月17 小时前
【DL】卷积神经网络
深度学习·机器学习·cnn·卷积神经网络