python与深度学习(七):CNN和fashion_mnist

目录

  • [1. 说明](#1. 说明)
  • [2. fashion_mnist实战](#2. fashion_mnist实战)
    • [2.1 导入相关库](#2.1 导入相关库)
    • [2.2 加载数据](#2.2 加载数据)
    • [2.3 数据预处理](#2.3 数据预处理)
    • [2.4 数据处理](#2.4 数据处理)
    • [2.5 构建网络模型](#2.5 构建网络模型)
    • [2.6 模型编译](#2.6 模型编译)
    • [2.7 模型训练](#2.7 模型训练)
    • [2.8 模型保存](#2.8 模型保存)
    • [2.9 模型评价](#2.9 模型评价)
    • [2.10 模型测试](#2.10 模型测试)
    • [2.11 模型训练结果的可视化](#2.11 模型训练结果的可视化)
  • [3. fashion_mnist的CNN模型可视化结果图](#3. fashion_mnist的CNN模型可视化结果图)
  • [4. 完整代码](#4. 完整代码)

1. 说明

本篇文章是CNN的另外一个例子,fashion_mnist,是衣服类的数据集。

可以搭建和手写数字识别的一样的模神经网络来训练模型。

2. fashion_mnist实战

2.1 导入相关库

以下第三方库是python专门用于深度学习的库

python 复制代码
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras
from keras.datasets import fashion_mnist
# 引入绘制acc和loss曲线的库
import matplotlib.pyplot as plt
# 引入ANN的必要的类
from keras.layers import Dense, Conv2D, MaxPool2D, Flatten
from keras.models import Sequential
from keras import optimizers, losses

2.2 加载数据

把fashion_mnist数据集进行加载

python 复制代码
"1.加载数据"
"""
x_train是fashion_mnist训练集图片,大小的28*28的,y_train是对应的标签是数字
x_test是fashion_mnist测试集图片,大小的28*28的,y_test是对应的标签是数字
"""
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()  # 加载fashion_mnist数据集
print('mnist_data:', x_train.shape, y_train.shape, x_test.shape, y_test.shape)  # 打印训练数据和测试数据的形状

2.3 数据预处理

(1) 将输入的图片进行归一化,从0-255变换到0-1;

(2) 将输入图片的形状(60000,28,28)转换成(60000,28,28,1),相当于将图片拉直,便于输入给神经网络;

(3) 将标签y进行独热编码,因为神经网络的输出是10个概率值,而y是1个数, 计算loss时无法对应计算,因此将y进行独立编码成为10个数的行向量,然后进行loss的计算 独热编码:例如数值1的10分类的独热编码是[0 1 0 0 0 0 0 0 0 0,即1的位置为1,其余位置为0。

python 复制代码
"2.数据预处理"


def preprocess(x, y):  # 数据预处理函数
    x = tf.cast(x, dtype=tf.float32) / 255.  # 将输入的图片进行归一化,从0-255变换到0-1
    x = tf.reshape(x, [28, 28, 1])
    """
    # 将输入图片的形状(60000,28,28)转换成(60000,28,28,1),
    相当于将图片拉直,便于输入给神经网络
    """
    y = tf.cast(y, dtype=tf.int32)  # 将输入图片的标签转换为int32类型
    y = tf.one_hot(y, depth=10)
    """
    # 将标签y进行独热编码,因为神经网络的输出是10个概率值,而y是1个数,
    计算loss时无法对应计算,因此将y进行独立编码成为10个数的行向量,然后进行loss的计算
    独热编码:例如数值1的10分类的独热编码是[0 1 0 0 0 0 0 0 0 0,即1的位置为1,其余位置为0
    """
    return x, y

2.4 数据处理

数据加载进入内存后,需要转换成 Dataset 对象,才能利用 TensorFlow 提供的各种便捷功能。

通过 Dataset.from_tensor_slices 可以将训练部分的数据图片 x 和标签 y 都转换成Dataset 对象

python 复制代码
batchsz = 128  # 每次输入给神经网络的图片数
"""
数据加载进入内存后,需要转换成 Dataset 对象,才能利用 TensorFlow 提供的各种便捷功能。
通过 Dataset.from_tensor_slices 可以将训练部分的数据图片 x 和标签 y 都转换成Dataset 对象
"""
db = tf.data.Dataset.from_tensor_slices((x_train, y_train))  # 构建训练集对象
db = db.map(preprocess).shuffle(60000).batch(batchsz)  # 将数据进行预处理,随机打散和批量处理
ds_val = tf.data.Dataset.from_tensor_slices((x_test, y_test))  # 构建测试集对象
ds_val = ds_val.map(preprocess).batch(batchsz)  # 将数据进行预处理,随机打散和批量处理

2.5 构建网络模型

构建了两层卷积层,两层池化层,然后是展平层(将二维特征图拉直输入给全连接层),然后是三层全连接层。

python 复制代码
"3.构建网络模型"
model = Sequential([Conv2D(filters=6, kernel_size=(5, 5), activation='relu'),
                    MaxPool2D(pool_size=(2, 2), strides=2),
                    Conv2D(filters=16, kernel_size=(5, 5), activation='relu'),
                    MaxPool2D(pool_size=(2, 2), strides=2),
                    Flatten(),
                    Dense(120, activation='relu'),
                    Dense(84, activation='relu'),
                    Dense(10,activation='softmax')])

model.build(input_shape=(None, 28, 28, 1))  # 模型的输入大小
model.summary()  # 打印网络结构

2.6 模型编译

模型的优化器是Adam,另外一种优化方法,学习率是0.01,

损失函数是losses.CategoricalCrossentropy,多分类交叉熵,

性能指标是正确率accuracy。

python 复制代码
"4.模型编译"
model.compile(optimizer='Adam',
              loss=losses.CategoricalCrossentropy(from_logits=False),
              metrics=['accuracy']
                )
"""
模型的优化器是Adam
损失函数是losses.CategoricalCrossentropy,
性能指标是正确率accuracy
"""

2.7 模型训练

模型训练的次数是20,每1次循环进行测试

python 复制代码
"5.模型训练"
history = model.fit(db, epochs=20, validation_data=ds_val, validation_freq=1)
"""
模型训练的次数是20,每1次循环进行测试
"""

2.8 模型保存

以.h5文件格式保存模型

python 复制代码
"6.模型保存"
model.save('cnn_fashion.h5')  # 以.h5文件格式保存模型

2.9 模型评价

得到测试集的正确率

python 复制代码
"7.模型评价"
model.evaluate(ds_val)  # 得到测试集的正确率

2.10 模型测试

对模型进行测试

python 复制代码
"8.模型测试"
sample = next(iter(ds_val))  # 取一个batchsz的测试集数据
x = sample[0]  # 测试集数据
y = sample[1]  # 测试集的标签
pred = model.predict(x)  # 将一个batchsz的测试集数据输入神经网络的结果
pred = tf.argmax(pred, axis=1)  # 每个预测的结果的概率最大值的下标,也就是预测的数字
y = tf.argmax(y, axis=1)  # 每个标签的最大值对应的下标,也就是标签对应的数字
print(pred)  # 打印预测结果
print(y)  # 打印标签数字

2.11 模型训练结果的可视化

对模型的训练结果进行可视化

python 复制代码
"9.模型训练时的可视化"
# 显示训练集和验证集的acc和loss曲线
acc = history.history['accuracy']  # 获取模型训练中的accuracy
val_acc = history.history['val_accuracy']  # 获取模型训练中的val_accuracy
loss = history.history['loss']  # 获取模型训练中的loss
val_loss = history.history['val_loss']  # 获取模型训练中的val_loss
# 绘值acc曲线
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
# 绘制loss曲线
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()  # 将结果显示出来

3. fashion_mnist的CNN模型可视化结果图

python 复制代码
Epoch 1/20
469/469 [==============================] - 13s 21ms/step - loss: 0.6610 - accuracy: 0.7600 - val_loss: 0.5067 - val_accuracy: 0.8097
Epoch 2/20
469/469 [==============================] - 12s 24ms/step - loss: 0.4408 - accuracy: 0.8375 - val_loss: 0.4202 - val_accuracy: 0.8491
Epoch 3/20
469/469 [==============================] - 12s 24ms/step - loss: 0.3844 - accuracy: 0.8595 - val_loss: 0.3868 - val_accuracy: 0.8605
Epoch 4/20
469/469 [==============================] - 13s 27ms/step - loss: 0.3507 - accuracy: 0.8707 - val_loss: 0.3924 - val_accuracy: 0.8533
Epoch 5/20
469/469 [==============================] - 13s 27ms/step - loss: 0.3272 - accuracy: 0.8805 - val_loss: 0.3621 - val_accuracy: 0.8674
Epoch 6/20
469/469 [==============================] - 14s 27ms/step - loss: 0.3106 - accuracy: 0.8859 - val_loss: 0.3436 - val_accuracy: 0.8728
Epoch 7/20
469/469 [==============================] - 14s 28ms/step - loss: 0.2923 - accuracy: 0.8923 - val_loss: 0.3429 - val_accuracy: 0.8732
Epoch 8/20
469/469 [==============================] - 14s 29ms/step - loss: 0.2821 - accuracy: 0.8962 - val_loss: 0.3268 - val_accuracy: 0.8802
Epoch 9/20
469/469 [==============================] - 14s 28ms/step - loss: 0.2714 - accuracy: 0.8994 - val_loss: 0.3208 - val_accuracy: 0.8832
Epoch 10/20
469/469 [==============================] - 14s 28ms/step - loss: 0.2621 - accuracy: 0.9031 - val_loss: 0.3187 - val_accuracy: 0.8822
Epoch 11/20
469/469 [==============================] - 12s 24ms/step - loss: 0.2517 - accuracy: 0.9059 - val_loss: 0.3154 - val_accuracy: 0.8870
Epoch 12/20
469/469 [==============================] - 12s 25ms/step - loss: 0.2418 - accuracy: 0.9098 - val_loss: 0.3058 - val_accuracy: 0.8928
Epoch 13/20
469/469 [==============================] - 12s 25ms/step - loss: 0.2344 - accuracy: 0.9129 - val_loss: 0.3182 - val_accuracy: 0.8885
Epoch 14/20
469/469 [==============================] - 12s 24ms/step - loss: 0.2277 - accuracy: 0.9150 - val_loss: 0.3212 - val_accuracy: 0.8824
Epoch 15/20
469/469 [==============================] - 12s 24ms/step - loss: 0.2190 - accuracy: 0.9177 - val_loss: 0.2903 - val_accuracy: 0.8981
Epoch 16/20
469/469 [==============================] - 12s 24ms/step - loss: 0.2141 - accuracy: 0.9198 - val_loss: 0.3071 - val_accuracy: 0.8895
Epoch 17/20
469/469 [==============================] - 12s 25ms/step - loss: 0.2091 - accuracy: 0.9211 - val_loss: 0.3042 - val_accuracy: 0.8897
Epoch 18/20
469/469 [==============================] - 13s 26ms/step - loss: 0.2018 - accuracy: 0.9239 - val_loss: 0.2985 - val_accuracy: 0.8973
Epoch 19/20
469/469 [==============================] - 13s 26ms/step - loss: 0.1942 - accuracy: 0.9275 - val_loss: 0.2867 - val_accuracy: 0.9026
Epoch 20/20
469/469 [==============================] - 12s 25ms/step - loss: 0.1887 - accuracy: 0.9286 - val_loss: 0.3019 - val_accuracy: 0.9005
79/79 [==============================] - 1s 9ms/step - loss: 0.3019 - accuracy: 0.9005


从以上结果可知,模型的准确率达到了90%

4. 完整代码

python 复制代码
# python练习
# 重新学习时间:2023/5/2 14:46
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras
from keras.datasets import fashion_mnist
# 引入绘制acc和loss曲线的库
import matplotlib.pyplot as plt
# 引入ANN的必要的类
from keras.layers import Dense, Conv2D, MaxPool2D, Flatten
from keras.models import Sequential
from keras import optimizers, losses

"1.加载数据"
"""
x_train是fashion_mnist训练集图片,大小的28*28的,y_train是对应的标签是数字
x_test是fashion_mnist测试集图片,大小的28*28的,y_test是对应的标签是数字
"""
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()  # 加载fashion_mnist数据集
print('mnist_data:', x_train.shape, y_train.shape, x_test.shape, y_test.shape)  # 打印训练数据和测试数据的形状

"2.数据预处理"


def preprocess(x, y):  # 数据预处理函数
    x = tf.cast(x, dtype=tf.float32) / 255.  # 将输入的图片进行归一化,从0-255变换到0-1
    x = tf.reshape(x, [28, 28, 1])
    """
    # 将输入图片的形状(60000,28,28)转换成(60000,28,28,1),
    相当于将图片拉直,便于输入给神经网络
    """
    y = tf.cast(y, dtype=tf.int32)  # 将输入图片的标签转换为int32类型
    y = tf.one_hot(y, depth=10)
    """
    # 将标签y进行独热编码,因为神经网络的输出是10个概率值,而y是1个数,
    计算loss时无法对应计算,因此将y进行独立编码成为10个数的行向量,然后进行loss的计算
    独热编码:例如数值1的10分类的独热编码是[0 1 0 0 0 0 0 0 0 0,即1的位置为1,其余位置为0
    """
    return x, y


batchsz = 128  # 每次输入给神经网络的图片数
"""
数据加载进入内存后,需要转换成 Dataset 对象,才能利用 TensorFlow 提供的各种便捷功能。
通过 Dataset.from_tensor_slices 可以将训练部分的数据图片 x 和标签 y 都转换成Dataset 对象
"""
db = tf.data.Dataset.from_tensor_slices((x_train, y_train))  # 构建训练集对象
db = db.map(preprocess).shuffle(60000).batch(batchsz)  # 将数据进行预处理,随机打散和批量处理
ds_val = tf.data.Dataset.from_tensor_slices((x_test, y_test))  # 构建测试集对象
ds_val = ds_val.map(preprocess).batch(batchsz)  # 将数据进行预处理,随机打散和批量处理

"3.构建网络模型"
model = Sequential([Conv2D(filters=6, kernel_size=(5, 5), activation='relu'),
                    MaxPool2D(pool_size=(2, 2), strides=2),
                    Conv2D(filters=16, kernel_size=(5, 5), activation='relu'),
                    MaxPool2D(pool_size=(2, 2), strides=2),
                    Flatten(),
                    Dense(120, activation='relu'),
                    Dense(84, activation='relu'),
                    Dense(10,activation='softmax')])

model.build(input_shape=(None, 28, 28, 1))  # 模型的输入大小
model.summary()  # 打印网络结构

"4.模型编译"
model.compile(optimizer='Adam',
              loss=losses.CategoricalCrossentropy(from_logits=False),
              metrics=['accuracy']
                )
"""
模型的优化器是Adam
损失函数是losses.CategoricalCrossentropy,
性能指标是正确率accuracy
"""

"5.模型训练"
history = model.fit(db, epochs=20, validation_data=ds_val, validation_freq=1)
"""
模型训练的次数是20,每1次循环进行测试
"""
"6.模型保存"
model.save('cnn_fashion.h5')  # 以.h5文件格式保存模型

"7.模型评价"
model.evaluate(ds_val)  # 得到测试集的正确率

"8.模型测试"
sample = next(iter(ds_val))  # 取一个batchsz的测试集数据
x = sample[0]  # 测试集数据
y = sample[1]  # 测试集的标签
pred = model.predict(x)  # 将一个batchsz的测试集数据输入神经网络的结果
pred = tf.argmax(pred, axis=1)  # 每个预测的结果的概率最大值的下标,也就是预测的数字
y = tf.argmax(y, axis=1)  # 每个标签的最大值对应的下标,也就是标签对应的数字
print(pred)  # 打印预测结果
print(y)  # 打印标签数字

"9.模型训练时的可视化"
# 显示训练集和验证集的acc和loss曲线
acc = history.history['accuracy']  # 获取模型训练中的accuracy
val_acc = history.history['val_accuracy']  # 获取模型训练中的val_accuracy
loss = history.history['loss']  # 获取模型训练中的loss
val_loss = history.history['val_loss']  # 获取模型训练中的val_loss
# 绘值acc曲线
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
# 绘制loss曲线
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()  # 将结果显示出来
相关推荐
何大春12 分钟前
【弱监督语义分割】Self-supervised Image-specific Prototype Exploration for WSSS 论文阅读
论文阅读·人工智能·python·深度学习·论文笔记·原型模式
在下不上天20 分钟前
Flume日志采集系统的部署,实现flume负载均衡,flume故障恢复
大数据·开发语言·python
SEVEN-YEARS24 分钟前
深入理解TensorFlow中的形状处理函数
人工智能·python·tensorflow
EterNity_TiMe_29 分钟前
【论文复现】(CLIP)文本也能和图像配对
python·学习·算法·性能优化·数据分析·clip
Suyuoa40 分钟前
附录2-pytorch yolov5目标检测
python·深度学习·yolo
好看资源平台2 小时前
网络爬虫——综合实战项目:多平台房源信息采集与分析系统
爬虫·python
余生H2 小时前
transformer.js(三):底层架构及性能优化指南
javascript·深度学习·架构·transformer
进击的六角龙2 小时前
深入浅出:使用Python调用API实现智能天气预报
开发语言·python
檀越剑指大厂2 小时前
【Python系列】浅析 Python 中的字典更新与应用场景
开发语言·python
罗小罗同学2 小时前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer