[PyTorch][chapter 45][RNN_2]

目录:

  1. RNN 问题
  2. RNN 时序链问题
  3. RNN 词组预测的例子
  4. RNN简洁实现

一 RNN 问题

RNN 主要有两个问题,梯度弥散和梯度爆炸

1.1 损失函数

梯度

其中:

1.1 梯度爆炸(Gradient Exploding)

上面矩阵进行连乘后k,可能会出现里面参数会变得极大

解决方案:

梯度剪裁:对W.grad进行约束

def print_current_grad(model):
    for  w in model.parameters():
        print(w.grad.norm())
    
loss.criterion(output, y)
model.zero_grad()
loss.backward()
print_current_grad(model)
torch.nn.utils.clip_grad_norm_(p,10)
print_current_grad(model)
optimizer.step()

1.2 梯度弥散(Gradient vanishing)

是由于时序链过程,导致梯度为0,前面的层参数无法更新。

解决方案 :

LSTM.


二 RNN 时序链问题

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 24 15:12:49 2023

@author: chengxf2
"""

import torch
import torch.nn as  nn
import numpy as np
import torch.optim as optim
import matplotlib.pyplot as plt  # 导入作图相关的包



'''
    生成训练的数据集
return 
   x: 当前时刻的输入值[batch_size=1, time_step=num_time_steps-1, feature=1]
   y: 当前时刻的标签值[batch_size=1, time_step=num_time_steps-1, feature=1]
'''
def sampleData():
    
    #生成一个[0-3]之间的数据
    start = np.random.randint(3,size=1)[0]
    num_time_steps =20
   
    #时序链长度为num_time_steps
    time_steps= np.linspace(start, start+10,num_time_steps)
    data = np.sin(time_steps)
    data = data.reshape(num_time_steps,1)
    
    #[batch, seq, dimension]
    x= torch.tensor(data[:-1]).float().view(1,num_time_steps-1,1)
    y= torch.tensor(data[1:]).float().view(1, num_time_steps-1,1)
 
    return x,y,time_steps

'''
    网络模型

args:
    input_size -- 输入x的特征数量。
    hidden_size -- 隐藏层的特征数量。
    num_layers -- RNN的层数。
    nonlinearity -- 指定非线性函数使用tanh还是relu。默认是tanh。
    bias -- 默认是True
    batch_first -- 如果True的话,那么输入Tensor的shape应该是[batch_size, time_step, feature],
           输出也是这样。默认是False
           dropout -- 如果值非零,那么除了最后一层外,其它层的输出都会套上一个dropout层。

    bidirectional -- 如果True,将会变成一个双向RNN,默认为False。
'''
class Net(nn.Module):
    
    def __init__(self,input_dim = 1, hidden_dim =10,  out_dim = 1):
        
        super(Net, self).__init__()
        self.rnn= nn.RNN(input_size = input_dim, 
                        hidden_size = hidden_dim,
                        num_layers = 1,
                        batch_first = True)
        
        self.linear= nn.Linear(in_features= hidden_dim, out_features=out_dim)
      
    #前向传播函数
    def forward(self,x,hidden_prev):
        # 给定一个h_state初始状态,(batch_size=1,layer=1,hidden_dim=10)
        # 给定一个序列x.shape:[batch_size, time_step, feature]
        hidden_dim =10
        
        #print("\n x.shape",x.shape)
        out,hidden_prev= self.rnn(x,hidden_prev)
        out = out.view(-1,hidden_dim) #[1,seq,h]=>[1*seq,h]
        out = self.linear(out)#[seq,h]=>[seq,1]
        
        out = out.unsqueeze(dim=0) #[seq,1] 指定的维度上面添加一个维度[batch=1,seq,1]
        
        return out, hidden_prev
    
    


def main():
    
    
    model = Net()
    criterion = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(),lr=1e-3)
    
    
    hidden_dim =10
    #初始值
    hidden_prv = torch.zeros(1,1,hidden_dim)
    
    for iter in range(5000):
        
        x,y,time_steps =sampleData() #[batch=1,seq=99,dim=1]
        
        output, hidden_prev =model(x,hidden_prv)
        
        hidden_prev = hidden_prev.detach()
        
        
        loss = criterion(output, y)
        
        model.zero_grad()
        loss.backward()
        optimizer.step()
        
        
        if iter %100 ==0:
            
            print("Iter:{} loss{}".format(iter, loss.item()))
            # 对最后一次的结果作图查看网络的预测效果
            
    
    plt.plot(time_steps[0:-1], y.flatten(), 'r-')
    plt.plot(time_steps[0:-1], output.data.numpy().flatten(), 'b-')
main()

三 RNN 词组预测的例子

这是参考李沐写得一个实现nn.RNN功能的例子

,一般很少用,都是直接用nn.RNN.

# -*- coding: utf-8 -*-
"""
Created on Wed Jul 26 14:17:49 2023

@author: chengxf2
"""

import math
import torch
from torch import nn
from torch.nn import functional as F
import numpy
import d2lzh_pytorch as d2l





#生成随机变量
def normal(shape,device):
    
    return torch.randn(size=shape, device=device)*0.01

#模型需要更新的权重系数
def get_params(vocab_size=27, num_hiddens=10, device='cuda:0'):
    
     num_inputs = num_outputs = vocab_size
     
     W_xh = normal((num_inputs,num_hiddens),device)
     W_hh = normal((num_hiddens,num_hiddens),device)
     b_xh = torch.zeros(num_hiddens,device=device)
     b_hh = torch.zeros(num_hiddens,device=device)
     
     W_hq = normal((num_hiddens,num_outputs),device)
     b_q = torch.zeros(num_outputs, device= device)

     params = [W_xh,W_hh, b_xh,b_hh, W_hq,b_q]
     
     for param in params:
         
         param.requires_grad_(True)
     
     return params
          
#初始的隐藏值 hidden ,tuple
def init_rnn_state(batch_size, hidden_size, device):
    
    h_init= torch.zeros((batch_size,hidden_size),device=device)
    return  (h_init,)


#RNN 函数定义了如何在时间序列上更新隐藏状态和输出
def rnn(X, h_init, params):
    
    W_xh,W_hh, b_xh,b_hh, W_hq,b_q = params
    
    hidden, = h_init
    
    outputs =[]
    for x_t in X:
        
        z_t = torch.mm(x_t, W_xh)+b_xh+ torch.mm(x_t,W_hh)+b_hh
        hidden =torch.tanh(z_t)
        
        out = torch.mm(hidden,W_hq)+b_q
        outputs.append(out)
        
    #[batch_size*T, dimension]
    return torch.cat(outputs, dim=0),(hidden,)

#根据给定的词,预测后面num_preds 个词
def predict_ch8(prefix, num_preds, net, vocab, device):

     #生成初始状态
     state = net.begin_state(batch_size=1, device=device)
     
     #把第一个词拿出来
     outputs = [vocab[prefix[0]]]
     
     
     get_input = lambda: torch.tensor([outputs[-1]],device=device,(1,1))
     
     for y in prefix[1:]:
         
         _,state = net(get_input(), state)
         outputs.append(vocab[y])
         
    for _ in range(num_preds):
        
        y, state = net(get_input(), state)
        
        outputs, (int(y.argmax(dim=1).reshape(1)))
    
    return ''.join([vocab.idex_to_toke[i] for i in output])


#梯度剪裁

def grad_clipping(net, theta):
    
    if isinstance(net, nn.Module):
        
        params = [p for p in net.parameters() if p.requires_grad_]
    else:
        params = net.params
        
    
    norm = torch.sqrt(sum(torch.sum(
        (p.grad**2)) for p in params)
        
    if norm > theta:
        
        for param in params:
            
            param.grad[:]*=theta/norm
        
        
     
class RNNModel:
    
      #从零开始实现RNN 网络模型#
      
      def __init__(self, vocab_size, hidden_size, device, get_params, init_rnn_state,forward_fn):
          forward_fn
          self.vocab_size = vocab_size, self.num_hiddens = hidden_size
          self.params = get_params(vocab_size, hidden_size, device)
          self.init_state = init_rnn_state(batch_size, hidden_size, device)
          self.forwad_fn = forward_fn
          
      #X.shape [batch_size,num_steps] 
      def __call__(self, X, state):
          
          X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
          
          #[num_steps, batch_size]
          return self.forwad_fn(X, state, self.params)
      
      
      def begin_state(self, batch_size, device):
          
          return self.init_state(batch_size, self.num_hiddens, device)
        
        
# 训练模型

def train_epoch_ch8(net, train_iter, loss, updater, device,)

    state, timer = None, d21.Timer()

    metric = d21.Accumulator(2)

    for X,Y in train_iter:
        
         if state is None or use_random_iter:
             state = net.beign_state(bacth_size=X.shape[0])
        
         else
              if isinstance(net, nn.Module) and not isinstance(o, t)
                  state.detach_()
              else
                  for s in state:
                      s.detach_()
                      
        y = Y.T.reshape(-1)
        X,y = X.to(device),y.to(device)
        
        y_hat,state=net(X,state)
        
        l = loss(y_hat,y.long()).mean()
        
        if isinstance(updater, torch.optim.Optimizer):
            
            updater.zero_grad()
            l.backward()
            grad_clipping(net, 1)
            updater.step()
        else
            l.backward()
            grad_clipping(net, 1)
            updater(batch_size=1)
        
        metric.add(1&y.numel(),y.numel())
    return math.exp(metric[0]/metric[1]))
        

def train(net, train_iter,vocab, lr,num_epochs, device, use_random_iter=False):
    
    
    loss = nn.CrossEntropyLoss()
    
    animator = d21.animator(xlabel='epoch',ylabel='preplexity',
                            legend=['train'],xlim=[10,num_epochs])
    
    
    if isinstance(net, nn.Module):
        
        updater = torch.optim.SGD(net.parameters(),lr)
    else:
        
        updater = lambda batch_size: d21.sgd(net.parameters,batch_size,lr)
        
    predict = lambda prefix: predict_ch8(prefix, num_preds=50, net, vocab, device)
    
    for epoch in range(num_epochs):
        
        ppl, spped = train_epoch_ch8(net, train_iter, updater(),use_random_iter())
        
        if (epoch+1)%10 ==0:
            
            print(predict('time traverller'))
            animator.add(epoch+1, [ppl])
            
    print(f'困惑度{ppl:lf},{speed:1f} 标记/秒')
    print(predict('time traveller'))
    print(predict('traveller'))
        
                  
               
        
      
        
def main():

   num_hiddens =512
   num_epochs, ,lr = 500,1
   
   vocab_size = len(vocab)
   #[批量大小,时间步数]
   batch_size, num_steps = 32, 10
   train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
   F.one_hot(torch.tensor([0,2]), len(vocab))
   X= torch.arange(10).reshape((2,5))
   Y = F.one_hot(X.T,28).shape #[step, batch_num]

   model = RNNModel(vocab_size, num_hiddens, dl2.try_gpu(), get_params, init_rnn_state, rnn)            
 
   
   train_ch8(model, train_iter, vocab,lr,num_epochs,dl2.try_gpu())
   
   
   
    
if __name__ == "__main__":
    
    main()

四 RNN简洁实现

# -*- coding: utf-8 -*-
"""
Created on Fri Jul 28 10:11:33 2023

@author: chengxf2
"""

import torch
from torch import nn
from torch.nn import functional as F




class SimpleRNN(nn.Module):
    
      def __init__(self,batch_size, input_size, hidden_size,out_size):
          
          super(SimpleRNN,self).__init__()
          
          self.batch_size,self.num_hiddens = batch_size,hidden_size
          self.rnn_layer = nn.RNN(input_size,hidden_size)
          self.linear = nn.Linear(hidden_size, out_size)
          
      
      def  forward(self, X,state):
          '''

          Parameters
          ----------
           X : [seq,batch, feature]
          state : [layer, batch, feature]
          -------
          #output:(layer, batch_size, hidden_size)
          state_new : []
          '''
          
          hidden, hidden_new = self.rnn_layer(X, state)
          
          hidden = hidden.view(-1, hidden.shape[-1])
          output = self.linear(hidden)
          
          
          
          return output ,hidden
    
      def init_hidden_state(self):
           '''
           初始化隐藏状态
          '''
           state = torch.zeros((1,self.batch_size, self.num_hiddens))
           return state
       
        
def main():
    seq_len = 3 #时序链长度
    batch_size =5 #批量大小
    input_size = 27
    hidden_size = 10
    out_size = 9
    
    X = torch.rand(size=(seq_len,batch_size,input_size))
    model = SimpleRNN(batch_size,input_size, hidden_size,out_size)
    
    init_state = model.init_hidden_state()
    output, hidden = model.forward(X, init_state)
    
    print("\n 输出值:",output.shape)
    print("\n 时刻的隐藏状态")
    print(hidden.shape)
    
if __name__ == "__main__":
    
    main()

pytorch入门10--循环神经网络(RNN)_rnn代码pytorch_微扬嘴角的博客-CSDN博客

【PyTorch】深度学习实践之 RNN基础篇------实现RNN_pytorch实现rnn_zoetu的博客-CSDN博客

RNN 的基本原理+pytorch代码_rnn代码_黄某某很聪明的博客-CSDN博客

55 循环神经网络 RNN 的实现【动手学深度学习v2】_哔哩哔哩_bilibili

《动手学深度学习》环境搭建全程详细教程 window用户_https://zh.d21.ai/d21-zh-1.1.zip_溶~月的博客-CSDN博客

ModuleNotFoundError: No module named 'd2l'_卡拉比丘流形的博客-CSDN博客

相关推荐
深度学习实战训练营11 分钟前
基于OpenCV的实时年龄与性别识别(支持CPU和GPU)
人工智能·opencv·计算机视觉
智匠MindCraft Al39 分钟前
一站式大语言模型API调用:快速上手教程
人工智能·gpt·ai·语言模型·语音识别
Jumbuck_101 小时前
以Flask为基础的虾皮Shopee“曲线滑块验证码”识别系统部署
后端·python·深度学习·yolo·flask·密码学
浊酒南街1 小时前
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)2.5-2.6
人工智能·深度学习·神经网络
美狐美颜sdk1 小时前
进阶美颜功能技术开发方案:探索视频美颜SDK
人工智能·音视频·直播美颜sdk·第三方美颜sdk·美狐美颜sdk
上理考研周导师1 小时前
【传感器技术】【第1章 传感器与检测技术的理论基础,测量系统,测量分类,误差分析,估计和处理】
人工智能
智能相对论2 小时前
在边缘共行者计划的高纬进击中,浪潮信息拉开边缘智算的时代大幕
人工智能·边缘智算
2的n次方_2 小时前
【机器学习】自动驾驶——智能交通与无人驾驶技术的未来
人工智能·机器学习·自动驾驶
The Open Group2 小时前
企业数字化转型的架构框架选择:多框架对比与TOGAF的应用深度解析
大数据·运维·人工智能·分布式·微服务·架构·数字化转型
sensor_WU2 小时前
【图像处理】多幅不同焦距的同一个物体的平面图象,合成一幅具有立体效果的单幅图像原理(二)
图像处理·人工智能