【深度学习笔记】Softmax 回归

本专栏是网易云课堂人工智能课程《神经网络与深度学习》的学习笔记,视频由网易云课堂与 deeplearning.ai 联合出品,主讲人是吴恩达 Andrew Ng 教授。感兴趣的网友可以观看网易云课堂的视频进行深入学习,视频的链接如下:

神经网络和深度学习 - 网易云课堂

也欢迎对神经网络与深度学习感兴趣的网友一起交流 ~

目录

[1 Softmax 激活函数](#1 Softmax 激活函数)

[2 Softmax 分类器](#2 Softmax 分类器)


1 Softmax 激活函数

对于分类问题,如果有多个分类结果,那么 Logistic 回归就不再适用了。Softmax 回归(Softmax Regression)是 Logistic 回归的一般形式,可以用于区分多个类别的情形,不只是两个分类。

假设有一个图片分类问题,你想要区分小猫、小狗、小鸡,不属于这三种图片的则归于其他。

用 C 表示类别的数量,分类器输出层包含的神经元数量应该等于 C,输出层每个神经元的输出表示该类别的概率值,并且所有输出概率之和应等于 1.

为了做到这一点,你需要使用 Softmax 激活函数,Softmax 激活函数首先对 z 值进行指数运算,得到非负数,然后作归一化处理。

相比其他激活函数,Softmax 激活函数的特殊之处在于,它的输入是一个 Cx1 维的向量,并且它的输出也是一个 Cx1 维的向量。

2 Softmax 分类器

实际上,Softmax 回归是 Logistic 回归的推广,如果分类结果恰好为 2,那么 Softmax 回归就变回到了 Logistic 回归(由于输出概率之和为 1,所以 Softmax 分类有一个输出节点是冗余的)。

Softmax 回归在单个样本上的损失函数定义为

当 yj = 1, j ∈ {0, 1, 2, ... , C-1} 时,其他分量为 0,因此最小化损失函数等价于最大化 log(\hat{y_{j}}),即最大化 \hat{y_{j}},又由于 \hat{y_{j}} 最大值为 1,所以优化算法会尽可能让 \hat{y_{j}} 接近 1,也就是接近 yj .

Softmax 回归在训练集上的代价函数定义为

相关推荐
Cathy Bryant1 小时前
球极平面投影
经验分享·笔记·数学建模
小虎鲸001 小时前
PyTorch的安装与使用
人工智能·pytorch·python·深度学习
Larry_Yanan1 小时前
QML学习笔记(三十一)QML的Flow定位器
java·前端·javascript·笔记·qt·学习·ui
The_Killer.2 小时前
近世代数(抽象代数)详细笔记--环(也有域的相关内容)
笔记·学习·抽象代数·
CM莫问2 小时前
推荐算法之粗排
深度学习·算法·机器学习·数据挖掘·排序算法·推荐算法·粗排
Larry_Yanan2 小时前
QML学习笔记(三十)QML的布局器(Layouts)
c++·笔记·qt·学习·ui
不会kao代码的小王2 小时前
突破机房围墙:openEuler设备的公网管理实战指南
开发语言·数据库·笔记
He BianGu2 小时前
【笔记】WPF中如何的动态设置DataGridTextColumn是否显示
笔记·wpf
ccut 第一混3 小时前
c# 使用yolov5模型
人工智能·深度学习
七元权4 小时前
论文阅读-FoundationStereo
论文阅读·深度学习·计算机视觉·零样本·基础模型·双目深度估计