【深度学习笔记】Softmax 回归

本专栏是网易云课堂人工智能课程《神经网络与深度学习》的学习笔记,视频由网易云课堂与 deeplearning.ai 联合出品,主讲人是吴恩达 Andrew Ng 教授。感兴趣的网友可以观看网易云课堂的视频进行深入学习,视频的链接如下:

神经网络和深度学习 - 网易云课堂

也欢迎对神经网络与深度学习感兴趣的网友一起交流 ~

目录

[1 Softmax 激活函数](#1 Softmax 激活函数)

[2 Softmax 分类器](#2 Softmax 分类器)


1 Softmax 激活函数

对于分类问题,如果有多个分类结果,那么 Logistic 回归就不再适用了。Softmax 回归(Softmax Regression)是 Logistic 回归的一般形式,可以用于区分多个类别的情形,不只是两个分类。

假设有一个图片分类问题,你想要区分小猫、小狗、小鸡,不属于这三种图片的则归于其他。

用 C 表示类别的数量,分类器输出层包含的神经元数量应该等于 C,输出层每个神经元的输出表示该类别的概率值,并且所有输出概率之和应等于 1.

为了做到这一点,你需要使用 Softmax 激活函数,Softmax 激活函数首先对 z 值进行指数运算,得到非负数,然后作归一化处理。

相比其他激活函数,Softmax 激活函数的特殊之处在于,它的输入是一个 Cx1 维的向量,并且它的输出也是一个 Cx1 维的向量。

2 Softmax 分类器

实际上,Softmax 回归是 Logistic 回归的推广,如果分类结果恰好为 2,那么 Softmax 回归就变回到了 Logistic 回归(由于输出概率之和为 1,所以 Softmax 分类有一个输出节点是冗余的)。

Softmax 回归在单个样本上的损失函数定义为

当 yj = 1, j ∈ {0, 1, 2, ... , C-1} 时,其他分量为 0,因此最小化损失函数等价于最大化 log(\hat{y_{j}}),即最大化 \hat{y_{j}},又由于 \hat{y_{j}} 最大值为 1,所以优化算法会尽可能让 \hat{y_{j}} 接近 1,也就是接近 yj .

Softmax 回归在训练集上的代价函数定义为

相关推荐
YRr YRr2 分钟前
深度学习:Transformer Decoder详解
人工智能·深度学习·transformer
Shy96041811 分钟前
Bert完形填空
python·深度学习·bert
老艾的AI世界29 分钟前
新一代AI换脸更自然,DeepLiveCam下载介绍(可直播)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai换脸·视频换脸·直播换脸·图片换脸
幸运超级加倍~35 分钟前
软件设计师-上午题-15 计算机网络(5分)
笔记·计算机网络
浊酒南街1 小时前
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)4.9-4.10
人工智能·深度学习·神经网络·cnn
懒惰才能让科技进步1 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
没有不重的名么2 小时前
门控循环单元GRU
人工智能·深度学习·gru
love_and_hope2 小时前
Pytorch学习--神经网络--搭建小实战(手撕CIFAR 10 model structure)和 Sequential 的使用
人工智能·pytorch·python·深度学习·学习
芊寻(嵌入式)2 小时前
C转C++学习笔记--基础知识摘录总结
开发语言·c++·笔记·学习
学术头条2 小时前
AI 的「phone use」竟是这样练成的,清华、智谱团队发布 AutoGLM 技术报告
人工智能·科技·深度学习·语言模型