【分布式能源的选址与定容】基于多目标粒子群算法分布式电源选址定容规划研究(Matlab代码实现)

目录

[💥1 概述](#💥1 概述)

[1.1 功率损耗](#1.1 功率损耗)

[​编辑1.2 电压质量](#编辑1.2 电压质量)

[1.3 DG总容量](#1.3 DG总容量)

[📚2 运行结果](#📚2 运行结果)

[🌈3 Matlab代码实现](#🌈3 Matlab代码实现)

[🎉4 参考文献](#🎉4 参考文献)


💥1 概述

参考文献:

本文采用的是换一个算法解决, 基于基于多目标粒子群算法分布式电源选址定容规划研究。

将可再生能源的分布式发电技术与大电网结 合,是 普 遍 公认的节能减排、绿色 环 保、安全可靠的电力系统运行方式, 是电力发展的方向。分布式电源(DG)是指在一定的地域范围内,以分散方式布置在用户附近, 与环境兼容的小型模块化发电单元,其发电功率为几千瓦到 几十兆瓦。

分布式发电系统目前大多与配电网并网运行。DG 入 电 网后,会对配电网的潮流分布产生影响,进而可以优化配电网 络,缓解配电网输 配 用 电 压 力。但 是 由 于 DG 的 投 入 和 退出有很大的随 机 性,且输出功率的稳定性易受环境影响,因此,DG的不当接入会对电网产生诸多负面影响,如 影 响 配 电网的稳定性及电压质量,产 生 谐 波 等。这 些 影 响 的 大 小 与DG的容量和接入位置有很大关,因此,DG 的选址定容是在 DG规划阶段中需要考虑的重点问题。

由于规划的优化目标较为单一,传 统 的 规 划 方 法 无 法 很 好地解决这一问题。近 年 来,考 虑 电 压、电流质量和环境等因素的多目标优化迅速发展,但量纲的不统一,使得求解的复杂性大大提高,给多目标优化提出了新的挑战。本文在 研究标准粒子群优化算法的基础上,针 对 配 电 网 中 DG 的 选址定容问题,建立了包括有功率损耗、电压质量及接入 DG 的总容量为目标函数的数学模型,基于多目标粒子群算法分布式电源选址定容规划研究,用Matlab解决之。

1.1 功率损耗

电能在从发电端传输到负载端的过程中,输电线路上产生的电能损耗不可址 见,只议r地减小有功功率损耗,提理地配置配电网中的 DG,可以有效地减小有功功率损耗,提高发电利用率,节约能量。基于有功功率损耗的目标函数最优数学表达式为:

1.2 电压质量

某些状况下,电力系统在遭受干扰后的几秒或几分钟内,系统中的某些母线电压可能经历大幅度﹑持续性降低,从而使得系统的完整性遭到破坏,功率不能正常地传送给用户。这种灾变称为系统电压不稳定﹐其灾难后果则是电压崩溃。通常用静态电压稳定指标来表示系统电压稳定性。配电网中电

压质量受配电系统的电压稳定性影呵。今乂术用能T网P电压基于期望电压的方差来描述电压质量。基于电压质量的目标函数最优数学表达式为:

1.3 DG总容量

在实际应用中不仅要考虑改善电网带来的经济效应,还需要考虑DG安装、运行和维护的成本费用问题。本文中不涉及经济模型,仅考虑接入配电网的DG总容量。基于DG总容量的目标函数最优数学表达式为:

📚 2 运行结果

🌈3 Matlab代码实现

部分代码:

%% 雅可比矩阵

J=[jpt jpv; jqt jqv];

X = (inv(J))*M;%偏差

%% 相位偏差

dTh = X(1:nbus-1);

%% 电压偏差

dV = X(nbus:end);

[e1,d1,n1]=eig(JR);%计算矩阵A的特征值和特征向量的函数是eig(A)[V,D,W] = eig(A),[V,D,W] = eig(A)返回满矩阵 W,其列是对应的左特征向量,使得 W'A = DW'。

%diag(A),若A是一个矩阵,则diag函数的作用是产生提取矩阵的对角线;若a是一个向量,则diag函数的作用是产生一个对角线为a的矩阵

%% 目标2 电压稳定性

f2val=max(1./diag((d1)))*max(abs(dQ));%目标2,稳定性

del(2:nbus) = dTh + del(2:nbus);

k = 1;

for i = 2:nbus

if type(i) == 3

V(i) = dV(k) + V(i);

k = k+1;

end

end

%% 目标2和目标3

tval=sum(1./diag((d1)));

po_val=flow_cal(nbus,V,del,BMva);

f1val=sum(po_val);%各支路网损和

f3val=sum(datain(5:8));%DG容量和

fout=[f1val; f2val; f3val];

for i = 1 : N

% Number of individuals that dominate this individual

individual(i).n = 0;

% Individuals which this individual dominate

individual(i).p = [];

for j = 1 : N

dom_less = 0;

dom_equal = 0;

dom_more = 0;

for k = 1 : M

if (x(i,V + k) < x(j,V + k))

dom_less = dom_less + 1;

elseif (x(i,V + k) == x(j,V + k))

dom_equal = dom_equal + 1;

else

dom_more = dom_more + 1;

end

end

if dom_less == 0 && dom_equal ~= M %大于等于的情况

individual(i).n = individual(i).n + 1;

elseif dom_more == 0 && dom_equal ~= M %小于等于的情况

individual(i).p = [individual(i).p j];

end

end

if individual(i).n == 0

x(i,M + V + 1) = 1;

F(front).f = [F(front).f i];

end

end

% Find the subsequent fronts

while ~isempty(F(front).f)

Q = [];

for i = 1 : length(F(front).f)

if ~isempty(individual(F(front).f(i)).p)

for j = 1 : length(individual(F(front).f(i)).p)

individual(individual(F(front).f(i)).p(j)).n = ...

individual(individual(F(front).f(i)).p(j)).n - 1;

if individual(individual(F(front).f(i)).p(j)).n == 0

x(individual(F(front).f(i)).p(j),M + V + 1) = ...

front + 1;

Q = [Q individual(F(front).f(i)).p(j)];

end

end

end

end

front = front + 1;

F(front).f = Q;

end

[temp,index_of_fronts] = sort(x(:,M + V + 1));

for i = 1 : length(index_of_fronts)

sorted_based_on_front(i,:) = x(index_of_fronts(i),:);

end

current_index = 0;

%% Crowding distance

%The crowing distance is calculated as below

% ?For each front Fi, n is the number of individuals.

% ?initialize the distance to be zero for all the individuals i.e. Fi(dj ) = 0,

% where j corresponds to the jth individual in front Fi.

% ?for each objective function m

% * Sort the individuals in front Fi based on objective m i.e. I =

% sort(Fi,m).

% * Assign infinite distance to boundary values for each individual

% in Fi i.e. I(d1) = ? and I(dn) = ?

% * for k = 2 to (n ? 1)

% ?I(dk) = I(dk) + (I(k + 1).m ? I(k ? 1).m)/fmax(m) - fmin(m)

% ?I(k).m is the value of the mth objective function of the kth

% individual in I

% Find the crowding distance for each individual in each front

for front = 1 : (length(F) - 1)

% objective = [];

distance = 0;

y = [];

previous_index = current_index + 1;

for i = 1 : length(F(front).f)

y(i,:) = sorted_based_on_front(current_index + i,:);

end

current_index = current_index + i;

% Sort each individual based on the objective

sorted_based_on_objective = [];

for i = 1 : M

[sorted_based_on_objective, index_of_objectives] = ...

sort(y(:,V + i));

sorted_based_on_objective = [];

for j = 1 : length(index_of_objectives)

sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);

end

f_max = ...

sorted_based_on_objective(length(index_of_objectives), V + i);

f_min = sorted_based_on_objective(1, V + i);

y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...

= Inf;

y(index_of_objectives(1),M + V + 1 + i) = Inf;

for j = 2 : length(index_of_objectives) - 1

next_obj = sorted_based_on_objective(j + 1,V + i);

previous_obj = sorted_based_on_objective(j - 1,V + i);

if (f_max - f_min == 0)

y(index_of_objectives(j),M + V + 1 + i) = Inf;

else

y(index_of_objectives(j),M + V + 1 + i) = ...

(next_obj - previous_obj)/(f_max - f_min);

end

end

end

distance = [];

distance(:,1) = zeros(length(F(front).f),1);

for i = 1 : M

distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);

end

y(:,M + V + 2) = distance;

y = y(:,1 : M + V + 2);

z(previous_index:current_index,:) = y;

end

f = z();

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]周洋,许维胜,王宁,邵炜晖.基于改进粒子群算法的多目标分布式电源选址定容规划[J].计算机科学,2015,42(S2):16-18+31.

[2]冯元元. 基于多目标规划的分布式发电选址定容研究[D].华北电力大学,2015.

[3]杨智君. 基于群智能算法的分布式电源选址与定容[D].太原科技大学,2019.DOI:10.27721/d.cnki.gyzjc.2019.000065.

相关推荐
花菜回锅肉39 分钟前
hadoop分布式文件系统常用命令
大数据·hadoop·分布式
adam_life1 小时前
OpenJudge_ 简单英文题_04:0/1 Knapsack
算法·动态规划
龙的爹23332 小时前
论文翻译 | The Capacity for Moral Self-Correction in Large Language Models
人工智能·深度学习·算法·机器学习·语言模型·自然语言处理·prompt
鸣弦artha3 小时前
蓝桥杯——杨辉三角
java·算法·蓝桥杯·eclipse
我是聪明的懒大王懒洋洋3 小时前
力扣力扣力:动态规划入门(1)
算法·leetcode·动态规划
丶Darling.3 小时前
Day44 | 动态规划 :状态机DP 买卖股票的最佳时机IV&&买卖股票的最佳时机III
算法·动态规划
TN_stark9324 小时前
多进程/线程并发服务器
服务器·算法·php
汉克老师4 小时前
GESP4级考试语法知识(贪心算法(四))
开发语言·c++·算法·贪心算法·图论·1024程序员节
2401_857636395 小时前
实时数据流的革命:分布式数据库的挑战与实践
数据库·分布式
smj2302_796826525 小时前
用枚举算法解决LeetCode第3348题最小可整除数位乘积II
python·算法·leetcode