PyTorch Lightning快速学习教程三:迁移学习

介绍:本期介绍Lightning的迁移学习

一、使用预训练的LightningModule

使用AutoEncoder作为特征提取器,同时其也作为模型的一部分

python 复制代码
class Encoder(torch.nn.Module):
    ...

class AutoEncoder(LightningModule):
    def __init__(self):
        self.encoder = Encoder()
        self.decoder = Decoder()

class CIFAR10Classifier(LightningModule):
    def __init__(self):
        # 初始化预训练权重
        self.feature_extractor = AutoEncoder.load_from_checkpoint(PATH)
        self.feature_extractor.freeze()

        # 输出是CIFAR10分类
        self.classifier = nn.Linear(100, 10)

    def forward(self, x):
        representations = self.feature_extractor(x)
        x = self.classifier(representations)
        ...

通过上述方法来实现迁移学习

栗子1:ImageNet(计算机视觉)

python 复制代码
import torchvision.models as models

class ImagenetTransferLearning(LightningModule):
    def __init__(self):
        super().__init__()

        # 初始化一个预训练好的resnet50
        backbone = models.resnet50(weights="DEFAULT")
        num_filters = backbone.fc.in_features
        layers = list(backbone.children())[:-1]
        self.feature_extractor = nn.Sequential(*layers)

        # 使用预训练模型对CIFAR10进行分类,用的是ImageNet的权重
        num_target_classes = 10
        self.classifier = nn.Linear(num_filters, num_target_classes)

    def forward(self, x):
        self.feature_extractor.eval()
        with torch.no_grad():
            representations = self.feature_extractor(x).flatten(1)
        x = self.classifier(representations)
        ...

Finetune(微调),进行训练

python 复制代码
model = ImagenetTransferLearning()
trainer = Trainer()
trainer.fit(model)

进行预测

python 复制代码
model = ImagenetTransferLearning.load_from_checkpoint(PATH)
model.freeze()

x = some_images_from_cifar10()
predictions = model(x)

imagenet的预训练模型,在CIFAR10上进行微调,以在CIFAR10上进行预测。在非学术领域,一般会对小数据集进行微调,并对数据集进行预测。一个意思。

栗子2:BERT(自然语言处理)

推荐一个transformer的git:hugging face

python 复制代码
class BertMNLIFinetuner(LightningModule):
    def __init__(self):
        super().__init__()

        self.bert = BertModel.from_pretrained("bert-base-cased", output_attentions=True)
        self.W = nn.Linear(bert.config.hidden_size, 3)
        self.num_classes = 3

    def forward(self, input_ids, attention_mask, token_type_ids):
        h, _, attn = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)

        h_cls = h[:, 0]
        logits = self.W(h_cls)
        return logits, attn
相关推荐
じ☆冷颜〃1 天前
随机微分层论:统一代数、拓扑与分析框架下的SPDE论述
笔记·python·学习·线性代数·拓扑学
前路不黑暗@1 天前
Java项目:Java脚手架项目的地图服务(十)
java·数据库·spring boot·笔记·学习·spring cloud·maven
-To be number.wan1 天前
算法学习日记 | 双指针
c++·学习·算法
科技林总1 天前
【系统分析师】9.1 信息系统安全体系
学习
爱问问题的小李1 天前
AI生成的Threejs常用Api学习计划
人工智能·学习
沄媪1 天前
CTF备赛学习
学习·ctf备赛·安全入门·windows安全系统
Bin Watson1 天前
FOC 学习记录(1):自然坐标系建模和 DQ 轴的引出
学习
『往事』&白驹过隙;1 天前
C/C++中的格式化输出与输入snprintf&sscanf
linux·c语言·c++·笔记·学习·iot·系统调用
好好学习天天向上~~1 天前
12_Linux学习总结_进程地址空间(虚拟地址)
linux·学习
red_redemption1 天前
自由学习记录(119)
学习