PyTorch Lightning快速学习教程三:迁移学习

介绍:本期介绍Lightning的迁移学习

一、使用预训练的LightningModule

使用AutoEncoder作为特征提取器,同时其也作为模型的一部分

python 复制代码
class Encoder(torch.nn.Module):
    ...

class AutoEncoder(LightningModule):
    def __init__(self):
        self.encoder = Encoder()
        self.decoder = Decoder()

class CIFAR10Classifier(LightningModule):
    def __init__(self):
        # 初始化预训练权重
        self.feature_extractor = AutoEncoder.load_from_checkpoint(PATH)
        self.feature_extractor.freeze()

        # 输出是CIFAR10分类
        self.classifier = nn.Linear(100, 10)

    def forward(self, x):
        representations = self.feature_extractor(x)
        x = self.classifier(representations)
        ...

通过上述方法来实现迁移学习

栗子1:ImageNet(计算机视觉)

python 复制代码
import torchvision.models as models

class ImagenetTransferLearning(LightningModule):
    def __init__(self):
        super().__init__()

        # 初始化一个预训练好的resnet50
        backbone = models.resnet50(weights="DEFAULT")
        num_filters = backbone.fc.in_features
        layers = list(backbone.children())[:-1]
        self.feature_extractor = nn.Sequential(*layers)

        # 使用预训练模型对CIFAR10进行分类,用的是ImageNet的权重
        num_target_classes = 10
        self.classifier = nn.Linear(num_filters, num_target_classes)

    def forward(self, x):
        self.feature_extractor.eval()
        with torch.no_grad():
            representations = self.feature_extractor(x).flatten(1)
        x = self.classifier(representations)
        ...

Finetune(微调),进行训练

python 复制代码
model = ImagenetTransferLearning()
trainer = Trainer()
trainer.fit(model)

进行预测

python 复制代码
model = ImagenetTransferLearning.load_from_checkpoint(PATH)
model.freeze()

x = some_images_from_cifar10()
predictions = model(x)

imagenet的预训练模型,在CIFAR10上进行微调,以在CIFAR10上进行预测。在非学术领域,一般会对小数据集进行微调,并对数据集进行预测。一个意思。

栗子2:BERT(自然语言处理)

推荐一个transformer的git:hugging face

python 复制代码
class BertMNLIFinetuner(LightningModule):
    def __init__(self):
        super().__init__()

        self.bert = BertModel.from_pretrained("bert-base-cased", output_attentions=True)
        self.W = nn.Linear(bert.config.hidden_size, 3)
        self.num_classes = 3

    def forward(self, input_ids, attention_mask, token_type_ids):
        h, _, attn = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)

        h_cls = h[:, 0]
        logits = self.W(h_cls)
        return logits, attn
相关推荐
YangYang9YangYan14 小时前
中专生学历提升与职业发展指南
大数据·人工智能·学习·数据分析
深蓝海拓15 小时前
YOLO v11的学习记录(五) 使用自定义数据从头训练一个实例分割的模型
学习·yolo
Gary Studio15 小时前
鋰電池充電芯片學習
学习
菜鸟‍15 小时前
【前端学习】React学习【万字总结】
前端·学习·react.js
AA陈超15 小时前
ASC学习笔记0019:返回给定游戏属性的当前值,如果未找到该属性则返回零。
c++·笔记·学习·游戏·ue5·虚幻引擎
知南x16 小时前
【STM32MP157 异核通信框架学习篇】(10)Linux下Remoteproc相关API (下)
linux·stm32·学习
Danceful_YJ19 小时前
33.Transformer架构
人工智能·pytorch·深度学习
Fantasydg1 天前
Servlet学习
学习·servlet
雍凉明月夜1 天前
Ⅰ人工智能学习的核心概念概述+线性回归(1)
人工智能·学习
2301_783360131 天前
R语言 | 带重要性相关热图和贡献图如何解释?如何绘制随机森林计算结果重要性及相关性图?[学习笔记]
学习·随机森林·r语言