【bar堆叠图形绘制】

绘制条形图示例

在数据可视化中,条形图是一种常用的图表类型,用于比较不同类别的数据值。Python的matplotlib库为我们提供了方便易用的功能来绘制条形图。

1. 基本条形图

首先,我们展示如何绘制基本的条形图。假设我们有一个包含十个类别的数据集,其中每个类别都有两个相关的数据值。我们使用matplotlib.pyplot库来绘制这个图。

python 复制代码
from matplotlib import pyplot as plt
import random

x = ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten']

# 设置 y1 和 y2 数组
y1 = []
y2 = []
for j in range(10):
    y1.append(random.randint(10, 30))
    y2.append(random.randint(1, 10))

# 绘制条形图并添加图例
plt.bar(range(len(x)), y1, label='y1')
plt.bar(range(len(x)), y2, label='y2', alpha=0.5)

# 设置 x、y 轴标签和范围
plt.xlabel('x')
plt.ylabel('y')
plt.xlim(-1, len(x))
plt.ylim(0, max(max(y1), max(y2)) + 5)

# 添加 x 轴刻度和轴标签
plt.xticks(range(len(x)), x, rotation=45)

# 添加图例
plt.legend()

plt.show()

上述代码绘制了一个基本的条形图,其中y1y2分别表示两组数据,对应于每个类别的值。我们使用不同的颜色和透明度来区分这两组数据,并添加了图例以标识不同的数据。

2. 堆叠条形图

接下来,我们展示如何绘制堆叠条形图。假设我们有四组数据,每组数据包含了五个类别的值。我们使用matplotlib.pyplot库来绘制这个图。

python 复制代码
import matplotlib.pyplot as plt
import numpy as np

data1 = [20, 30, 40, 50, 60]
data2 = [30, 50, 70, 90, 110]
data3 = [15, 25, 35, 45, 55]
data4 = [22, 33, 44, 55, 66]

labels = ['A', 'B', 'C', 'D', 'E']

plt.bar(labels, data1, label='Data 1')
plt.bar(labels, data2, label='Data 2', bottom=data1)
plt.bar(labels, data3, label='Data 3', bottom=[sum(x) for x in zip(data1, data2)])
plt.bar(labels, data4, label='Data 4', bottom=[sum(x) for x in zip(data1, data2, data3)])
plt.legend()
plt.show()

上述代码绘制了一个堆叠条形图,其中每组数据通过堆叠的方式展示。我们使用bottom参数来指定每组数据的起始高度,从而实现了数据的堆叠效果。图例展示了每个数据组的标签,方便比较不同类别的值。

相关推荐
摩羯座-185690305943 小时前
Python数据可视化基础:使用Matplotlib绘制图表
大数据·python·信息可视化·matplotlib
乐吾乐科技4 小时前
乐吾乐大屏可视化组态软件【SQL数据源】
物联网·信息可视化·编辑器·数据可视化·大屏端
大佬,救命!!!6 小时前
整理python快速构建数据可视化前端的Dash库
python·信息可视化·学习笔记·dash·记录成长
Leo.yuan13 小时前
不同数据仓库模型有什么不同?企业如何选择适合的数据仓库模型?
大数据·数据库·数据仓库·信息可视化·spark
咔咔一顿操作15 小时前
第七章 Cesium 3D 粒子烟花效果案例解析:从原理到完整代码
人工智能·3d·信息可视化·cesium
XiaoMu_0011 天前
基于Python+Streamlit的旅游数据分析与预测系统:从数据可视化到机器学习预测的完整实现
python·信息可视化·旅游
IT研究室2 天前
大数据毕业设计选题推荐-基于大数据的国家药品采集药品数据可视化分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·信息可视化·spark·毕业设计·数据可视化·bigdata
毕设源码-郭学长2 天前
【开题答辩全过程】以电商数据可视化系统为例,包含答辩的问题和答案
信息可视化
没有梦想的咸鱼185-1037-16632 天前
【高分论文密码】大尺度空间模拟预测与数字制图
信息可视化·数据分析·r语言
二川bro2 天前
第27节:3D数据可视化与大规模地形渲染
3d·信息可视化