【bar堆叠图形绘制】

绘制条形图示例

在数据可视化中,条形图是一种常用的图表类型,用于比较不同类别的数据值。Python的matplotlib库为我们提供了方便易用的功能来绘制条形图。

1. 基本条形图

首先,我们展示如何绘制基本的条形图。假设我们有一个包含十个类别的数据集,其中每个类别都有两个相关的数据值。我们使用matplotlib.pyplot库来绘制这个图。

python 复制代码
from matplotlib import pyplot as plt
import random

x = ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten']

# 设置 y1 和 y2 数组
y1 = []
y2 = []
for j in range(10):
    y1.append(random.randint(10, 30))
    y2.append(random.randint(1, 10))

# 绘制条形图并添加图例
plt.bar(range(len(x)), y1, label='y1')
plt.bar(range(len(x)), y2, label='y2', alpha=0.5)

# 设置 x、y 轴标签和范围
plt.xlabel('x')
plt.ylabel('y')
plt.xlim(-1, len(x))
plt.ylim(0, max(max(y1), max(y2)) + 5)

# 添加 x 轴刻度和轴标签
plt.xticks(range(len(x)), x, rotation=45)

# 添加图例
plt.legend()

plt.show()

上述代码绘制了一个基本的条形图,其中y1y2分别表示两组数据,对应于每个类别的值。我们使用不同的颜色和透明度来区分这两组数据,并添加了图例以标识不同的数据。

2. 堆叠条形图

接下来,我们展示如何绘制堆叠条形图。假设我们有四组数据,每组数据包含了五个类别的值。我们使用matplotlib.pyplot库来绘制这个图。

python 复制代码
import matplotlib.pyplot as plt
import numpy as np

data1 = [20, 30, 40, 50, 60]
data2 = [30, 50, 70, 90, 110]
data3 = [15, 25, 35, 45, 55]
data4 = [22, 33, 44, 55, 66]

labels = ['A', 'B', 'C', 'D', 'E']

plt.bar(labels, data1, label='Data 1')
plt.bar(labels, data2, label='Data 2', bottom=data1)
plt.bar(labels, data3, label='Data 3', bottom=[sum(x) for x in zip(data1, data2)])
plt.bar(labels, data4, label='Data 4', bottom=[sum(x) for x in zip(data1, data2, data3)])
plt.legend()
plt.show()

上述代码绘制了一个堆叠条形图,其中每组数据通过堆叠的方式展示。我们使用bottom参数来指定每组数据的起始高度,从而实现了数据的堆叠效果。图例展示了每个数据组的标签,方便比较不同类别的值。

相关推荐
企销客CRM1 小时前
CRM管理软件的数据可视化功能使用技巧:让数据驱动决策
信息可视化·数据挖掘·数据分析·用户运营
深空数字孪生17 小时前
惊艳呈现:探索数据可视化的艺术与科学
信息可视化
lingzhilab20 小时前
零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
stm32·嵌入式硬件·信息可视化
Leo.yuan1 天前
API是什么意思?如何实现开放API?
大数据·运维·数据仓库·人工智能·信息可视化
格调UI成品1 天前
从混乱到秩序:探索管理系统如何彻底改变工作流程
信息可视化·交互
小邹子1 天前
抑郁症患者数据分析
python·信息可视化·数据分析
自由鬼2 天前
数据分析图表类型及其应用场景
信息可视化·数据挖掘·数据分析
坚持就完事了3 天前
平滑技术(数据处理,持续更新...)
信息可视化·数据挖掘·数据分析
darkb1rd3 天前
一站式直播工具:助力内容创作者高效开启直播新时代
信息可视化
java1234_小锋3 天前
一周学会Pandas2之Python数据处理与分析-Pandas2数据绘图与可视化
开发语言·python·信息可视化·pandas