Stable Diffusion - 真人照片的高清修复 (StableSR + GFPGAN) 最佳实践

欢迎关注我的CSDN:https://spike.blog.csdn.net/

本文地址:https://spike.blog.csdn.net/article/details/132032216

GFPGAN (Generative Facial Prior GAN) 算法,用于实现真实世界的盲脸恢复的算法,利用预训练的面部 GAN(如 StyleGAN2 )中封装的丰富和多样的先验信息,来修复低质量、模糊、噪声或者损坏的人脸图像。GFPGAN 算法的主要贡献有以下几点:

  • 提出生成式面部先验(GFP),可以从预训练的面部 GAN 中提取高质量的面部特征,并通过空间特征变换层(SFT)将其融合到面部恢复过程中,从而提高了面部图像的真实性和保真度。
  • 设计通道分割空间特征变换层(CS-SFT),可以根据输入特征对GAN特征进行部分调制,从而在纹理的真实性和保真度之间达到一个良好的平衡。
  • 引入面部成分损失和身份保留损失,可以分别增强感知显著的面部成分(如眼睛、鼻子、嘴巴等)和保留面部的身份信息,从而提高了面部图像的视觉质量和语义一致性。

Paper: Towards Real-World Blind Face Restoration with Generative Facial Prior

有些模糊的真实图像,需要高清修复细节,同时,重点关注于人脸区域,保持人物属性不变。


1. 图像放大

图像放大4倍,扩充细节,可选 4x-UltraSharp 算法 (快速) 或 StableSR 算法 (高质量),参考 超分辨率插件 StableSR v2 (768x768) 配置与使用

1. Extra 4x-UltraSharp

SD Tab 选择 后期处理 (Extra), 放大算法使用 4x-UltraSharp ,图像放大 4倍,配置如下:

放大效果如下,重点观察脸部细节:

2. StableSR

StableSR算法的整体效果和细节,均优于4x-UltraSharp 算法,缺点是速度较慢。

使用 StableSR 放大算法脚本,同样放大 4 倍,启用 Tiled DiffusionTiled VAE,效果如下:

整体的对比效果,如下:


2. 脸部细节

修复完全身之后,再使用 后期处理 (Extra)GFPGAN 功能,修复脸部细节。

建议提前下载 GFPGAN 的 3 个模型,即 detection_Resnet50_Final.pthparsing_parsenet.pthGFPGANv1.4.pth

bash 复制代码
https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth
# models/GFPGAN/detection_Resnet50_Final.pth

https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth
# models/GFPGAN/parsing_parsenet.pth

https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth
# models/GFPGAN/GFPGANv1.4.pth

cd models/GFPGAN/

wget https://ghproxy.com/https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth
wget https://ghproxy.com/https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth
wget https://ghproxy.com/https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth

注意:GFPGAN 不会修改面部细节,只提供放大功能,而CodeFormer 则会修改面部细节。

GFPGAN 和 CodeFormer 的配置如下:

  • GFPGAN的可见程度设置为 1.0,更高权重。
  • CodeFormer可见程度设置为 0.2,权重设置为 0.8 (反向)

Extra 4x-UltraSharpGFPGAN 脸部修复,效果如下:

Stable SRExtra 4x-UltraSharpGFPGAN 脸部修复,明显Stable SR 优于 Extra 4x-UltraSharp,效果如下:

最终修复效果,即 StableSR + GFPGAN

参考:田曦薇的照片

相关推荐
迈火4 天前
Facerestore CF (Code Former):ComfyUI人脸修复的卓越解决方案
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
重启编程之路4 天前
Stable Diffusion 参数记录
stable diffusion
孤狼warrior8 天前
图像生成 Stable Diffusion模型架构介绍及使用代码 附数据集批量获取
人工智能·python·深度学习·stable diffusion·cnn·transformer·stablediffusion
love530love10 天前
【避坑指南】提示词“闹鬼”?Stable Diffusion 自动注入神秘词汇 xiao yi xian 排查全记录
人工智能·windows·stable diffusion·model keyword
世界尽头与你10 天前
Stable Diffusion web UI 未授权访问漏洞
安全·网络安全·stable diffusion·渗透测试
love530love10 天前
【故障解析】Stable Diffusion WebUI 更换主题后启动报 JSONDecodeError?可能是“主题加载”惹的祸
人工智能·windows·stable diffusion·大模型·json·stablediffusion·gradio 主题
ai_xiaogui15 天前
Stable Diffusion Web UI 绘世版 v4.6.1 整合包:一键极速部署,深度解决 AI 绘画环境配置与 CUDA 依赖难题
人工智能·stable diffusion·环境零配置·高性能内核优化·全功能插件集成·极速部署体验
微学AI16 天前
金仓数据库的新格局:以多模融合开创文档数据库
人工智能·stable diffusion
我的golang之路果然有问题16 天前
开源绘画大模型简单了解
人工智能·ai作画·stable diffusion·人工智能作画
我的golang之路果然有问题16 天前
comfyUI中的动作提取分享
人工智能·stable diffusion·ai绘画·人工智能作画·comfy