Stable Diffusion - 真人照片的高清修复 (StableSR + GFPGAN) 最佳实践

欢迎关注我的CSDN:https://spike.blog.csdn.net/

本文地址:https://spike.blog.csdn.net/article/details/132032216

GFPGAN (Generative Facial Prior GAN) 算法,用于实现真实世界的盲脸恢复的算法,利用预训练的面部 GAN(如 StyleGAN2 )中封装的丰富和多样的先验信息,来修复低质量、模糊、噪声或者损坏的人脸图像。GFPGAN 算法的主要贡献有以下几点:

  • 提出生成式面部先验(GFP),可以从预训练的面部 GAN 中提取高质量的面部特征,并通过空间特征变换层(SFT)将其融合到面部恢复过程中,从而提高了面部图像的真实性和保真度。
  • 设计通道分割空间特征变换层(CS-SFT),可以根据输入特征对GAN特征进行部分调制,从而在纹理的真实性和保真度之间达到一个良好的平衡。
  • 引入面部成分损失和身份保留损失,可以分别增强感知显著的面部成分(如眼睛、鼻子、嘴巴等)和保留面部的身份信息,从而提高了面部图像的视觉质量和语义一致性。

Paper: Towards Real-World Blind Face Restoration with Generative Facial Prior

有些模糊的真实图像,需要高清修复细节,同时,重点关注于人脸区域,保持人物属性不变。


1. 图像放大

图像放大4倍,扩充细节,可选 4x-UltraSharp 算法 (快速) 或 StableSR 算法 (高质量),参考 超分辨率插件 StableSR v2 (768x768) 配置与使用

1. Extra 4x-UltraSharp

SD Tab 选择 后期处理 (Extra), 放大算法使用 4x-UltraSharp ,图像放大 4倍,配置如下:

放大效果如下,重点观察脸部细节:

2. StableSR

StableSR算法的整体效果和细节,均优于4x-UltraSharp 算法,缺点是速度较慢。

使用 StableSR 放大算法脚本,同样放大 4 倍,启用 Tiled DiffusionTiled VAE,效果如下:

整体的对比效果,如下:


2. 脸部细节

修复完全身之后,再使用 后期处理 (Extra)GFPGAN 功能,修复脸部细节。

建议提前下载 GFPGAN 的 3 个模型,即 detection_Resnet50_Final.pthparsing_parsenet.pthGFPGANv1.4.pth

bash 复制代码
https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth
# models/GFPGAN/detection_Resnet50_Final.pth

https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth
# models/GFPGAN/parsing_parsenet.pth

https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth
# models/GFPGAN/GFPGANv1.4.pth

cd models/GFPGAN/

wget https://ghproxy.com/https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth
wget https://ghproxy.com/https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth
wget https://ghproxy.com/https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth

注意:GFPGAN 不会修改面部细节,只提供放大功能,而CodeFormer 则会修改面部细节。

GFPGAN 和 CodeFormer 的配置如下:

  • GFPGAN的可见程度设置为 1.0,更高权重。
  • CodeFormer可见程度设置为 0.2,权重设置为 0.8 (反向)

Extra 4x-UltraSharpGFPGAN 脸部修复,效果如下:

Stable SRExtra 4x-UltraSharpGFPGAN 脸部修复,明显Stable SR 优于 Extra 4x-UltraSharp,效果如下:

最终修复效果,即 StableSR + GFPGAN

参考:田曦薇的照片

相关推荐
Blossom.1181 天前
基于多智能体强化学习的云资源调度系统:如何用MARL把ECS成本打下来60%
人工智能·python·学习·决策树·机器学习·stable diffusion·音视频
Yeliang Wu3 天前
Stable Diffusion WebUI 从安装到实战:原理、部署与问题全解
stable diffusion
Yeliang Wu3 天前
ComfyUI 全流程指南:安装、配置、插件与模型选型
stable diffusion·文生图·图生图·comfyui
LCG米3 天前
[OpenVINO实战] 在边缘设备上运行Stable Diffusion,实现离线文生图
人工智能·stable diffusion·openvino
水上冰石4 天前
rtx5060部署stable-diffusion1.10.1版本注意事项
stable diffusion
水上冰石4 天前
stable-diffusion-webui的v1.10.1版本汉化
stable diffusion
梯度下降不了班4 天前
【mmodel/xDit】Cross-Attention 深度解析:文生图/文生视频的核心桥梁
人工智能·深度学习·ai作画·stable diffusion·音视频·transformer
余蓝4 天前
快速部署 stable-diffusion-xl-base-1.0(SDXL)
ai作画·stable diffusion·dall·e 2
梯度下降不了班5 天前
【mmodel/xDiT】多模态^_^从入门到放弃的学习路径
人工智能·学习·stable diffusion
love530love5 天前
【ComfyUI/SD环境管理指南(二)】:如何避免插件安装导致的环境崩溃与“外科手术式”修复
人工智能·windows·python·stable diffusion·github·aigc·comfyui