Stable Diffusion - 真人照片的高清修复 (StableSR + GFPGAN) 最佳实践

欢迎关注我的CSDN:https://spike.blog.csdn.net/

本文地址:https://spike.blog.csdn.net/article/details/132032216

GFPGAN (Generative Facial Prior GAN) 算法,用于实现真实世界的盲脸恢复的算法,利用预训练的面部 GAN(如 StyleGAN2 )中封装的丰富和多样的先验信息,来修复低质量、模糊、噪声或者损坏的人脸图像。GFPGAN 算法的主要贡献有以下几点:

  • 提出生成式面部先验(GFP),可以从预训练的面部 GAN 中提取高质量的面部特征,并通过空间特征变换层(SFT)将其融合到面部恢复过程中,从而提高了面部图像的真实性和保真度。
  • 设计通道分割空间特征变换层(CS-SFT),可以根据输入特征对GAN特征进行部分调制,从而在纹理的真实性和保真度之间达到一个良好的平衡。
  • 引入面部成分损失和身份保留损失,可以分别增强感知显著的面部成分(如眼睛、鼻子、嘴巴等)和保留面部的身份信息,从而提高了面部图像的视觉质量和语义一致性。

Paper: Towards Real-World Blind Face Restoration with Generative Facial Prior

有些模糊的真实图像,需要高清修复细节,同时,重点关注于人脸区域,保持人物属性不变。


1. 图像放大

图像放大4倍,扩充细节,可选 4x-UltraSharp 算法 (快速) 或 StableSR 算法 (高质量),参考 超分辨率插件 StableSR v2 (768x768) 配置与使用

1. Extra 4x-UltraSharp

SD Tab 选择 后期处理 (Extra), 放大算法使用 4x-UltraSharp ,图像放大 4倍,配置如下:

放大效果如下,重点观察脸部细节:

2. StableSR

StableSR算法的整体效果和细节,均优于4x-UltraSharp 算法,缺点是速度较慢。

使用 StableSR 放大算法脚本,同样放大 4 倍,启用 Tiled DiffusionTiled VAE,效果如下:

整体的对比效果,如下:


2. 脸部细节

修复完全身之后,再使用 后期处理 (Extra)GFPGAN 功能,修复脸部细节。

建议提前下载 GFPGAN 的 3 个模型,即 detection_Resnet50_Final.pthparsing_parsenet.pthGFPGANv1.4.pth

bash 复制代码
https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth
# models/GFPGAN/detection_Resnet50_Final.pth

https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth
# models/GFPGAN/parsing_parsenet.pth

https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth
# models/GFPGAN/GFPGANv1.4.pth

cd models/GFPGAN/

wget https://ghproxy.com/https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth
wget https://ghproxy.com/https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth
wget https://ghproxy.com/https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth

注意:GFPGAN 不会修改面部细节,只提供放大功能,而CodeFormer 则会修改面部细节。

GFPGAN 和 CodeFormer 的配置如下:

  • GFPGAN的可见程度设置为 1.0,更高权重。
  • CodeFormer可见程度设置为 0.2,权重设置为 0.8 (反向)

Extra 4x-UltraSharpGFPGAN 脸部修复,效果如下:

Stable SRExtra 4x-UltraSharpGFPGAN 脸部修复,明显Stable SR 优于 Extra 4x-UltraSharp,效果如下:

最终修复效果,即 StableSR + GFPGAN

参考:田曦薇的照片

相关推荐
源客z17 小时前
搭建Stable Diffusion图像生成系统实现通过网址访问(Ngrok+Flask实现项目系统公网测试,轻量易部署)
stable diffusion
源客z1 天前
搭建 Stable Diffusion 图像生成系统并通过 Ngrok 暴露到公网(实现本地系统网络访问)——项目记录
stable diffusion
朴拙数科3 天前
Stable Diffusion秋叶整合包V4独立版Python本地API连接指南
开发语言·python·stable diffusion
璇转的鱼4 天前
爆肝整理!Stable Diffusion的完全使用手册(二)
人工智能·ai作画·stable diffusion·aigc
曲幽5 天前
Stable Diffusion LoRA模型加载实现风格自由
python·ai·stable diffusion·lora·文生图·diffusers
nan_black7 天前
在Pycharm配置stable diffusion环境(使用conda虚拟环境)
stable diffusion·pycharm·conda
AI绘画咪酱7 天前
Stable Diffusion【进阶篇】:如何实现人脸一致
人工智能·深度学习·学习·机器学习·ai作画·stable diffusion
AIGC-Lison8 天前
AI绘画SD中,如何保持生成人物角色脸部一致?Stable Diffusion精准控制AI人像一致性两种实用方法教程!
人工智能·ai作画·stable diffusion·midjourney·sd
AI绘画咪酱9 天前
SD教程|巧用Stable Diffusion,实现不同风格的LOGO设计|实战篇幅,建议收藏!
人工智能·学习·ai作画·stable diffusion·sd
AI绘画咪酱10 天前
【CSDN首发】Stable Diffusion从零到精通学习路线分享
人工智能·学习·macos·ai作画·stable diffusion·aigc