DDPM和DDIM

b站讲解

Diffusion Probabilistic Models (DDPM)和Diffusion Implicit Models (DDIM)。

  • DDIM是对DDPM的加速工作

  • 通过对DDPM的损失函数观察,做出改进

  • 损失函数只和 x t x_t xt有关系:实际上不止优化了第t步,前边所有得到 x t x_t xt的过程,包括加入的噪声,都被隐式的优化了;优化非马尔可夫过程的模型(非链式传导)

  • 拿到预训练的DDPM之后可以选择其中一部分的时间节点进行反向过程,中间的(t-1)步实际上都被优化好了;因此训练的时候可以选<t 的子集中的时间步进行优化;

    • DDIM模型自己定义了一个前向过程,推理过程中不是DDPM 的noise predict(预测t时刻的噪声),而是data predict(直接预测 x 0 x_0 x0),然后和 x t x_t xt一起得到 x t − 1 x_{t-1} xt−1

    采样过程的区别:

  • DDIM不是马尔可夫链,把所有时间步方差=0,高斯噪声的随机性被移除了,变成了确定性的结果,

  • DDPM是马尔可夫链,方差每次是随机的,

    DDIM在连续时间维度,可以看成一个常微分方程。类比song yang博士提出了基于随机微分方程的加噪、去噪框架。反向的随机微分方程有一个对应的常微分方程,它们之间共享同一个边缘分布,因此可以通过解ODE方程来解决问题,而DDIM对应于这个过程。

相关推荐
袁庭新1 小时前
大学生为什么一定要重视AI的学习?
人工智能·aigc
酷雷曼VR全景1 小时前
为什么要用VR全景?5个答案告诉你
人工智能·科技·vr·vr全景·酷雷曼
华略创新1 小时前
标准化与定制化的平衡艺术:制造企业如何通过灵活配置释放系统价值
大数据·人工智能·制造·crm·管理系统·erp·企业管理
wei_shuo1 小时前
用于机器学习的 Podman 简介:简化 MLOps 工作流程
人工智能·机器学习·podman
小马哥编程1 小时前
计算机网络:调制解调器
人工智能·计算机网络·语音识别
这张生成的图像能检测吗2 小时前
(论文速读)视觉语言模型评价中具有挑战性的选择题的自动生成
人工智能·计算机视觉·语言模型·视觉语言模型
赴3352 小时前
残差网络 迁移学习对食物分类案例的改进
人工智能·分类·迁移学习·resnet18
林森见鹿2 小时前
测试驱动开发 (TDD) 与 Claude Code 的协作实践详解
人工智能·驱动开发·tdd
黎燃2 小时前
AI推荐系统:如何悄无声息地重塑你的购物车?
人工智能
AntBlack2 小时前
每周学点 AI:ComfyUI + Modal 的一键部署脚本
人工智能·后端·aigc