DDPM和DDIM

b站讲解

Diffusion Probabilistic Models (DDPM)和Diffusion Implicit Models (DDIM)。

  • DDIM是对DDPM的加速工作

  • 通过对DDPM的损失函数观察,做出改进

  • 损失函数只和 x t x_t xt有关系:实际上不止优化了第t步,前边所有得到 x t x_t xt的过程,包括加入的噪声,都被隐式的优化了;优化非马尔可夫过程的模型(非链式传导)

  • 拿到预训练的DDPM之后可以选择其中一部分的时间节点进行反向过程,中间的(t-1)步实际上都被优化好了;因此训练的时候可以选<t 的子集中的时间步进行优化;

    • DDIM模型自己定义了一个前向过程,推理过程中不是DDPM 的noise predict(预测t时刻的噪声),而是data predict(直接预测 x 0 x_0 x0),然后和 x t x_t xt一起得到 x t − 1 x_{t-1} xt−1

    采样过程的区别:

  • DDIM不是马尔可夫链,把所有时间步方差=0,高斯噪声的随机性被移除了,变成了确定性的结果,

  • DDPM是马尔可夫链,方差每次是随机的,

    DDIM在连续时间维度,可以看成一个常微分方程。类比song yang博士提出了基于随机微分方程的加噪、去噪框架。反向的随机微分方程有一个对应的常微分方程,它们之间共享同一个边缘分布,因此可以通过解ODE方程来解决问题,而DDIM对应于这个过程。

相关推荐
王哥儿聊AI6 分钟前
CompLLM 来了:长文本 Q&A 效率革命,线性复杂度 + 缓存复用,推理速度与效果双丰收
人工智能·深度学习·机器学习·语言模型
minhuan26 分钟前
构建AI智能体:四十六、Codebuddy MCP 实践:用高德地图搭建旅游攻略系统
人工智能·mcp·codebuddy·高德api
不当菜鸡的程序媛1 小时前
https://duoke360.com/post/35063
人工智能
IT_陈寒1 小时前
SpringBoot3踩坑实录:一个@Async注解让我多扛了5000QPS
前端·人工智能·后端
_Meilinger_1 小时前
碎片笔记|生成模型原理解读:AutoEncoder、GAN 与扩散模型图像生成机制
人工智能·生成对抗网络·gan·扩散模型·图像生成·diffusion model
Listennnn2 小时前
BEV query 式图片点云视觉特征融合
人工智能
DS-RAG2 小时前
万方智能体投票火热进行中~
人工智能
semantist@语校2 小时前
语校网500所里程碑:日本语言学校数据库的标准化与可追溯机制
大数据·数据库·人工智能·百度·语言模型·oracle·github
key063 小时前
《数据出境安全评估办法》企业应对策略
网络·人工智能·安全
key063 小时前
数据安全能力成熟度模型 (DSMM) 核心要点
大数据·人工智能