使用DataX实现mysql与hive数据互相导入导出

一、概论

1.1 什么是DataX

DataX 是阿里巴巴开源 的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等各种异构数据源之间稳定高效的数据同步功能。

1.2 DataX 的设计

为了解决异构数据源同步问题,DataX 将复杂的网状 的同步链路变成了星型 数据链路,DataX 作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到 DataX,便能跟已有的数据源做到无缝数据同步

1.3 框架设计

  • Reader:数据采集模块,负责采集数据源的数据,将数据发给Framework。
  • Wiriter: 数据写入模块,负责不断向Framwork取数据,并将数据写入到目的端。
  • Framework :用于连接read和writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。
    运行原理
  • Job:单个作业的管理节点,负责数据清理、子任务划分、TaskGroup监控管理。
  • Task:由Job切分而来,是DataX作业的最小单元,每个Task负责一部分数据的同步工作。
  • Schedule:将Task组成TaskGroup,单个TaskGroup的并发数量为5。
  • TaskGroup:负责启动Task。

1.4 Datax所支持的渠道

类型 数据源 读者 作家(写) 文件
RDBMS关系型数据库 MySQL
甲骨文
SQL服务器
PostgreSQL的
DRDS
通用RDBMS(支持所有关系型数据库)
阿里云数仓数据存储 ODPS
美国存托凭证
开源软件
OCS
NoSQL数据存储 OTS
Hbase0.94
Hbase1.1
凤凰4.x
凤凰5.x
MongoDB
蜂巢
卡桑德拉
无结构化数据存储 文本文件
的FTP
HDFS
弹性搜索
时间序列数据库 OpenTSDB
技术开发局

二、快速入门

2.1 环境搭建

下载地址: http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz
源码地址: https://github.com/alibaba/DataX

配置要求:

  • Linux
  • JDK(1.8以上 建议1.8) 下载
  • Python(推荐 Python2.6.X) 下载
    安装:

1) 将下载好的datax.tar.gz上传到服务器的任意节点,我这里上传到node01上的/exprot/soft
2)解压到/export/servers/

bash 复制代码
[root@node01 soft]# tar -zxvf datax.tar.gz  -C ../servers/

3)运行自检脚本

出现以下结果说明你得环境没有问题

/opt/module/datax/plugin/reader/._hbase094xreader/plugin.json\]不存在. 请检查您的配置文件. ![在这里插入图片描述](https://file.jishuzhan.net/article/1686903417424842754/ef9b9524323e4cde8a94fc4371f45a89.png) ## 2.2搭建环境注意事项 \[/opt/module/datax/plugin/reader/._hbase094xreader/plugin.json\]不存在. 请检查您的配置文件. 参考: ```bash find ./* -type f -name ".*er" | xargs rm -rf find: paths must precede expression: | Usage: find [-H] [-L] [-P] [-Olevel] [-D help|tree|search|stat|rates|opt|exec] [path...] [expression] find /datax/plugin/reader/ -type f -name "._*er" | xargs rm -rf find /datax/plugin/writer/ -type f -name "._*er" | xargs rm -rf 这里的/datax/plugin/writer/要改为你自己的目录 ``` 原文链接:https://blog.csdn.net/dz77dz/article/details/127055299 ## 2.3读取Mysql中的数据写入到HDFS **准备** 创建数据库和表并加载测试数据 ```prettyprint create database test; use test; create table c_s( id varchar(100) null, c_id int null, s_id varchar(20) null ); INSERT INTO test.c_s (id, c_id, s_id) VALUES ('123', 1, '201967'); INSERT INTO test.c_s (id, c_id, s_id) VALUES ('123', 2, '201967'); INSERT INTO test.c_s (id, c_id, s_id) VALUES ('123', 3, '201967'); INSERT INTO test.c_s (id, c_id, s_id) VALUES ('123', 5, '201967'); INSERT INTO test.c_s (id, c_id, s_id) VALUES ('123', 6, '201967'); ``` 查看官方提供的模板 ```bash [root@node01 datax]# bin/datax.py -r mysqlreader -w hdfswriter DataX (DATAX-OPENSOURCE-3.0), From Alibaba ! Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved. Please refer to the mysqlreader document: https://github.com/alibaba/DataX/blob/master/mysqlreader/doc/mysqlreader.md Please refer to the hdfswriter document: https://github.com/alibaba/DataX/blob/master/hdfswriter/doc/hdfswriter.md Please save the following configuration as a json file and use python {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json to run the job. { "job": { "content": [ { "reader": { "name": "mysqlreader", "parameter": { "column": [], "connection": [ { "jdbcUrl": [], "table": [] } ], "password": "", "username": "", "where": "" } }, "writer": { "name": "hdfswriter", "parameter": { "column": [], "compress": "", "defaultFS": "", "fieldDelimiter": "", "fileName": "", "fileType": "", "path": "", "writeMode": "" } } } ], "setting": { "speed": { "channel": "" } } } } ``` 根据官网模板进行修改 ```bash [root@node01 datax]# vim job/mysqlToHDFS.json { "job": { "content": [ { "reader": { "name": "mysqlreader", "parameter": { "column": [ "id", "c_id", "s_id" ], "connection": [ { "jdbcUrl": [ "jdbc:mysql://node02:3306/test" ], "table": [ "c_s" ] } ], "password": "123456", "username": "root" } }, "writer": { "name": "hdfswriter", "parameter": { "column": [ { "name": "id", "type": "string" }, { "name": "c_id", "type": "int" }, { "name": "s_id", "type": "string" } ], "defaultFS": "hdfs://node01:8020", "fieldDelimiter": "\t", "fileName": "c_s.txt", "fileType": "text", "path": "/", "writeMode": "append" } } } ], "setting": { "speed": { "channel": "1" } } } } ``` HDFS的端口号注意版本,2.7.4 是9000;hdfs://node01:9000 MySQL的参数介绍 ![在这里插入图片描述](https://file.jishuzhan.net/article/1686903417424842754/164b586b94144f16b766a535437f5466.png) HDFS参数介绍 ![在这里插入图片描述](https://file.jishuzhan.net/article/1686903417424842754/e740938a421e4bdea0afb14b4f155e0a.png) 运行脚本 ```bash [root@node01 datax]# bin/datax.py job/mysqlToHDFS.json 2020-10-02 16:12:16.358 [job-0] INFO HookInvoker - No hook invoked, because base dir not exists or is a file: /export/servers/datax/hook 2020-10-02 16:12:16.359 [job-0] INFO JobContainer - [total cpu info] => averageCpu | maxDeltaCpu | minDeltaCpu -1.00% | -1.00% | -1.00% [total gc info] => NAME | totalGCCount | maxDeltaGCCount | minDeltaGCCount | totalGCTime | maxDeltaGCTime | minDeltaGCTime PS MarkSweep | 1 | 1 | 1 | 0.245s | 0.245s | 0.245s PS Scavenge | 1 | 1 | 1 | 0.155s | 0.155s | 0.155s 2020-10-02 16:12:16.359 [job-0] INFO JobContainer - PerfTrace not enable! 2020-10-02 16:12:16.359 [job-0] INFO StandAloneJobContainerCommunicator - Total 5 records, 50 bytes | Speed 5B/s, 0 records/s | Error 0 records, 0 bytes | All Task WaitWriterTime 0.000s | All Task WaitReaderTime 0.000s | Percentage 100.00% 2020-10-02 16:12:16.360 [job-0] INFO JobContainer - 任务启动时刻 : 2020-10-02 16:12:04 任务结束时刻 : 2020-10-02 16:12:16 任务总计耗时 : 12s 任务平均流量 : 5B/s 记录写入速度 : 0rec/s 读出记录总数 : 5 读写失败总数 : 0 ``` ## 2.4 读取HDFS中的数据写入到Mysql **准备工作** ```prettyprint create database test; use test; create table c_s2( id varchar(100) null, c_id int null, s_id varchar(20) null ); ``` 查看官方提供的模板 ```bash [root@node01 datax]# bin/datax.py -r hdfsreader -w mysqlwriter DataX (DATAX-OPENSOURCE-3.0), From Alibaba ! Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved. Please refer to the hdfsreader document: https://github.com/alibaba/DataX/blob/master/hdfsreader/doc/hdfsreader.md Please refer to the mysqlwriter document: https://github.com/alibaba/DataX/blob/master/mysqlwriter/doc/mysqlwriter.md Please save the following configuration as a json file and use python {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json to run the job. { "job": { "content": [ { "reader": { "name": "hdfsreader", "parameter": { "column": [], "defaultFS": "", "encoding": "UTF-8", "fieldDelimiter": ",", "fileType": "orc", "path": "" } }, "writer": { "name": "mysqlwriter", "parameter": { "column": [], "connection": [ { "jdbcUrl": "", "table": [] } ], "password": "", "preSql": [], "session": [], "username": "", "writeMode": "" } } } ], "setting": { "speed": { "channel": "" } } } } ``` 根据官方提供模板进行修改 ```bash [root@node01 datax]# vim job/hdfsTomysql.json { "job": { "content": [ { "reader": { "name": "hdfsreader", "parameter": { "column": [ "*" ], "defaultFS": "hdfs://node01:8020", "encoding": "UTF-8", "fieldDelimiter": "\t", "fileType": "text", "path": "/c_s.txt" } }, "writer": { "name": "mysqlwriter", "parameter": { "column": [ "id", "c_id", "s_id" ], "connection": [ { "jdbcUrl": "jdbc:mysql://node02:3306/test", "table": [ "c_s2" ] } ], "password": "123456", "username": "root", "writeMode": "replace" } } } ], "setting": { "speed": { "channel": "1" } } } } ``` 脚本运行 ```bash [root@node01 datax]# bin/datax.py job/hdfsTomysql.json [total cpu info] => averageCpu | maxDeltaCpu | minDeltaCpu -1.00% | -1.00% | -1.00% [total gc info] => NAME | totalGCCount | maxDeltaGCCount | minDeltaGCCount | totalGCTime | maxDeltaGCTime | minDeltaGCTime PS MarkSweep | 1 | 1 | 1 | 0.026s | 0.026s | 0.026s PS Scavenge | 1 | 1 | 1 | 0.015s | 0.015s | 0.015s 2020-10-02 16:57:13.152 [job-0] INFO JobContainer - PerfTrace not enable! 2020-10-02 16:57:13.152 [job-0] INFO StandAloneJobContainerCommunicator - Total 5 records, 50 bytes | Speed 5B/s, 0 records/s | Error 0 records, 0 bytes | All Task WaitWriterTime 0.000s | All Task WaitReaderTime 0.033s | Percentage 100.00% 2020-10-02 16:57:13.153 [job-0] INFO JobContainer - 任务启动时刻 : 2020-10-02 16:57:02 任务结束时刻 : 2020-10-02 16:57:13 任务总计耗时 : 11s 任务平均流量 : 5B/s 记录写入速度 : 0rec/s 读出记录总数 : 5 读写失败总数 : 0 ``` ## 2.5将Mysql表导入Hive 1.在hive中建表 ```sql -- hive建表 CREATE TABLE student2 ( classNo string, stuNo string, score int) row format delimited fields terminated by ','; -- 构造点mysql数据 create table if not exists student2( classNo varchar ( 50 ), stuNo varchar ( 50 ), score int ) insert into student2 values('1001','1012ww10087',63); insert into student2 values('1002','1012aa10087',63); insert into student2 values('1003','1012bb10087',63); insert into student2 values('1004','1012cc10087',63); insert into student2 values('1005','1012dd10087',63); insert into student2 values('1006','1012ee10087',63); ``` 2.编写mysql2hive.json配置文件 ```python { "job": { "setting": { "speed": { "channel": 1 } }, "content": [ { "reader": { "name": "mysqlreader", "parameter": { "username": "root", "password": "root", "connection": [ { "table": [ "student2" ], "jdbcUrl": [ "jdbc:mysql://192.168.43.10:3306/mytestmysql" ] } ], "column": [ "classNo", "stuNo", "score" ] } }, "writer": { "name": "hdfswriter", "parameter": { "defaultFS": "hdfs://192.168.43.10:9000", "path": "/hive/warehouse/home/myhive.db/student2", "fileName": "myhive", "writeMode": "append", "fieldDelimiter": ",", "fileType": "text", "column": [ { "name": "classNo", "type": "string" }, { "name": "stuNo", "type": "string" }, { "name": "score", "type": "int" } ] } } } ] } } ``` 3.运行脚本 ```bash bin/datax.py job/mysql2hive.json ``` 4.查看hive表是否有数据 ![](https://file.jishuzhan.net/article/1686903417424842754/395148667da7447cb68cb4f79b98af4c.png) ## 2.6将Hive表数据导入Mysql 1.要先在mysql建好表 ```sql create table if not exists student( classNo varchar ( 50 ), stuNo varchar ( 50 ), score int ) ``` 2.hive2mysql.json配置文件 ```python { "job": { "setting": { "speed": { "channel": 3 } }, "content": [ { "reader": { "name": "hdfsreader", "parameter": { "path": "/hive/warehouse/home/myhive.db/student/*", "defaultFS": "hdfs://192.168.43.10:9000", "column": [ { "index": 0, "type": "string" }, { "index": 1, "type": "string" }, { "index": 2, "type": "Long" } ], "fileType": "text", "encoding": "UTF-8", "fieldDelimiter": "," } }, "writer": { "name": "mysqlwriter", "parameter": { "writeMode": "insert", "username": "root", "password": "root", "column": [ "classNo", "stuNo", "score" ], "preSql": [ "delete from student" ], "connection": [ { "jdbcUrl": "jdbc:mysql://192.168.43.10:3306/mytestmysql?useUnicode=true&characterEncoding=utf8", "table": [ "student" ] } ] } } } ] } } ``` 注意事项: ```bash 在Hive的ODS层建表语句中,以","为分隔符; fields terminated by ',' 在DataX的json文件中,也以","为分隔符。 "fieldDelimiter": "," 与hive表里面的分隔符保持一致即可 ``` 由于DataX不能完全支持所有Hive表的数据类型,应将DataX启动文件中的hdfsreader中的column字段的类型改成DataX支持的类型 ![](https://file.jishuzhan.net/article/1686903417424842754/de0738c9ce9041f29bd11270e00a6418.png)

相关推荐
雨大王51216 小时前
工业大数据平台:释放数据价值,驱动制造业高质量发展
大数据
瑞华丽PLM16 小时前
破局“多品种、小批量”:瑞华丽 PLM 赋能汽车零部件企业精益研发与智能制造
大数据·汽车·制造·plm·国产plm·瑞华丽plm·瑞华丽
跨境卫士情报站17 小时前
TikTok跨境电商第二增长曲线:从“跑量”到“跑利润”的精细化运营
大数据·人工智能·产品运营·跨境电商·tiktok·营销策略
Data-Miner17 小时前
集团数字化转型采购供应链及财务管控业务流程蓝图规划方案(170页PPT)
大数据
志凌海纳SmartX17 小时前
金融行业IT基础设施转型实践|450+机构部署轻量云,支持核心生产与信创业务
大数据·数据库·金融
Coder个人博客17 小时前
Linux6.19-ARM64 mm mmap子模块深入分析
大数据·linux·安全·车载系统·系统架构·系统安全·鸿蒙系统
走遍西兰花.jpg17 小时前
spark配置
大数据·分布式·spark
档案宝档案管理18 小时前
档案管理系统如何支持多级审批流?自定义节点与角色权限详解
大数据·人工智能·档案·档案管理
BYSJMG18 小时前
计算机毕业设计选题推荐:基于Hadoop的城市交通数据可视化系统
大数据·vue.js·hadoop·分布式·后端·信息可视化·课程设计
BYSJMG18 小时前
Python毕业设计选题推荐:基于大数据的美食数据分析与可视化系统实战
大数据·vue.js·后端·python·数据分析·课程设计·美食