pytorch(6)——神经网络基本骨架nn.module的使用

1 神经网络框架

1.1 Module类的使用

NN (Neural network): 神经网络

Containers: 容器

Convolution Layers: 卷积层

Pooling layers: 池化层

Padding Layers: 填充层

Non-linear Activations (weighted sum, nonlinearity): 非线性激活

Non-linear Activations (other): 非线性激活

Normalization Layers: 归一化层

...

Containers 包括:

(1)Module:所有神经网络的基类

https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

Class torch.nn.Module(*args, **kwargs)

python 复制代码
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, inputX):
        x = F.relu(self.conv1(inputX))
        return F.relu(self.conv2(inputX))

forward函数内:relu()为激活函数,conv为卷积函数。输入inputX-> 卷积-> 非线性处理(relu)-> 卷积 ->非线性(relu)。

python代码:

python 复制代码
from torch import nn
import torch


class MyNN(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, inputX):
        outputX = inputX + 1
        return outputX

mynn = MyNN()
x = torch.tensor(1.0)
output = mynn(x)
print(output)

输出结果:

tensor(2.)

1.2 二维卷积计算

二维卷积 conv2d()

输入和输出的矩阵类型都需要(N, C_{in}, H_{in}, W_{in})

输入图像1024x800,卷积核3x3,每次9个元素相乘后相加,不断向右移动并计算,移动到最右侧之后;然后向下移动并计算,移动到最下侧之后,完成卷积计算。

python 复制代码
import torch
import torch.nn.functional as F

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])
kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])
input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))

print("input:")
print(input)
print("kernel:")
print(kernel)

output = F.conv2d(input, kernel, stride=1)
print("output:")
print(output)

输出结果:

python 复制代码
input:
tensor([[[[1, 2, 0, 3, 1],
          [0, 1, 2, 3, 1],
          [1, 2, 1, 0, 0],
          [5, 2, 3, 1, 1],
          [2, 1, 0, 1, 1]]]])
kernel:
tensor([[[[1, 2, 1],
          [0, 1, 0],
          [2, 1, 0]]]])
output:
tensor([[[[10, 12, 12],
          [18, 16, 16],
          [13,  9,  3]]]])

如果将步进stride修改为2。

python 复制代码
output2 = F.conv2d(input, kernel, stride=2)
print("output2:")
print(output2)

输出结果为:

python 复制代码
output2:
tensor([[[[10, 12],
          [13,  3]]]])

padding填充,将原图像的四周填充一圈0,这样的话,卷积计算的结果维度就会更大。

python 复制代码
output3 = F.conv2d(input, kernel, stride=1, padding=1)
print("output3:")
print(output3)

输出的结果:

python 复制代码
tensor([[[[ 1,  3,  4, 10,  8],
          [ 5, 10, 12, 12,  6],
          [ 7, 18, 16, 16,  8],
          [11, 13,  9,  3,  4],
          [14, 13,  9,  7,  4]]]])
相关推荐
巴里巴气28 分钟前
安装GPU版本的Pytorch
人工智能·pytorch·python
「、皓子~37 分钟前
后台管理系统的诞生 - 利用AI 1天完成整个后台管理系统的微服务后端+前端
前端·人工智能·微服务·小程序·go·ai编程·ai写作
说私域1 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的抖音渠道力拓展与多渠道利润增长研究
人工智能·小程序·开源
笑衬人心。1 小时前
初学Spring AI 笔记
人工智能·笔记·spring
luofeiju1 小时前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
测试者家园1 小时前
基于DeepSeek和crewAI构建测试用例脚本生成器
人工智能·python·测试用例·智能体·智能化测试·crewai
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | Call Me Maybe:用图神经网络增强JavaScript调用图构建
论文阅读·人工智能·软件工程
大模型真好玩1 小时前
准确率飙升!Graph RAG如何利用知识图谱提升RAG答案质量(四)——微软GraphRAG代码实战
人工智能·python·mcp
Baihai_IDP2 小时前
vec2text 技术已开源!一定条件下,文本嵌入向量可“近乎完美地”还原
人工智能·面试·llm
江太翁2 小时前
Pytorch torch
人工智能·pytorch·python