pytorch(6)——神经网络基本骨架nn.module的使用

1 神经网络框架

1.1 Module类的使用

NN (Neural network): 神经网络

Containers: 容器

Convolution Layers: 卷积层

Pooling layers: 池化层

Padding Layers: 填充层

Non-linear Activations (weighted sum, nonlinearity): 非线性激活

Non-linear Activations (other): 非线性激活

Normalization Layers: 归一化层

...

Containers 包括:

(1)Module:所有神经网络的基类

https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

Class torch.nn.Module(*args, **kwargs)

python 复制代码
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, inputX):
        x = F.relu(self.conv1(inputX))
        return F.relu(self.conv2(inputX))

forward函数内:relu()为激活函数,conv为卷积函数。输入inputX-> 卷积-> 非线性处理(relu)-> 卷积 ->非线性(relu)。

python代码:

python 复制代码
from torch import nn
import torch


class MyNN(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, inputX):
        outputX = inputX + 1
        return outputX

mynn = MyNN()
x = torch.tensor(1.0)
output = mynn(x)
print(output)

输出结果:

tensor(2.)

1.2 二维卷积计算

二维卷积 conv2d()

输入和输出的矩阵类型都需要(N, C_{in}, H_{in}, W_{in})

输入图像1024x800,卷积核3x3,每次9个元素相乘后相加,不断向右移动并计算,移动到最右侧之后;然后向下移动并计算,移动到最下侧之后,完成卷积计算。

python 复制代码
import torch
import torch.nn.functional as F

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])
kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])
input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))

print("input:")
print(input)
print("kernel:")
print(kernel)

output = F.conv2d(input, kernel, stride=1)
print("output:")
print(output)

输出结果:

python 复制代码
input:
tensor([[[[1, 2, 0, 3, 1],
          [0, 1, 2, 3, 1],
          [1, 2, 1, 0, 0],
          [5, 2, 3, 1, 1],
          [2, 1, 0, 1, 1]]]])
kernel:
tensor([[[[1, 2, 1],
          [0, 1, 0],
          [2, 1, 0]]]])
output:
tensor([[[[10, 12, 12],
          [18, 16, 16],
          [13,  9,  3]]]])

如果将步进stride修改为2。

python 复制代码
output2 = F.conv2d(input, kernel, stride=2)
print("output2:")
print(output2)

输出结果为:

python 复制代码
output2:
tensor([[[[10, 12],
          [13,  3]]]])

padding填充,将原图像的四周填充一圈0,这样的话,卷积计算的结果维度就会更大。

python 复制代码
output3 = F.conv2d(input, kernel, stride=1, padding=1)
print("output3:")
print(output3)

输出的结果:

python 复制代码
tensor([[[[ 1,  3,  4, 10,  8],
          [ 5, 10, 12, 12,  6],
          [ 7, 18, 16, 16,  8],
          [11, 13,  9,  3,  4],
          [14, 13,  9,  7,  4]]]])
相关推荐
buttonupAI3 小时前
今日Reddit各AI板块高价值讨论精选(2025-12-20)
人工智能
2501_904876484 小时前
2003-2021年上市公司人工智能的采纳程度测算数据(含原始数据+计算结果)
人工智能
竣雄4 小时前
计算机视觉:原理、技术与未来展望
人工智能·计算机视觉
救救孩子把4 小时前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
Rabbit_QL5 小时前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
呆萌很5 小时前
HSV颜色空间过滤
人工智能
roman_日积跬步-终至千里5 小时前
【人工智能导论】02-搜索-高级搜索策略探索篇:从约束满足到博弈搜索
java·前端·人工智能
FL16238631295 小时前
[C#][winform]基于yolov11的淡水鱼种类检测识别系统C#源码+onnx模型+评估指标曲线+精美GUI界面
人工智能·yolo·目标跟踪
爱笑的眼睛115 小时前
从 Seq2Seq 到 Transformer++:深度解构与自构建现代机器翻译核心组件
java·人工智能·python·ai
小润nature6 小时前
AI时代对编程技能学习方式的根本变化(1)
人工智能