为什么流程工业需要合适的预测性维护方案?

在当今工业中,预测性维护是一项至关重要的战略,它能够帮助企业预测设备故障并防止代价高昂的停机。然而,对于流程制造和离散制造来说,选择合适的预测性维护解决方案是至关重要的,因为这两类行业在设备运营和维护方面存在一些不同之处。

流程工业的预测性维护面临一些独特的挑战,我们需要考虑以下几点:

1.数据存在和复杂性

流程工业通常受到严格监管,因此制造商需要投入大量资金来安装传感器并收集数据。由于数据已经存在,寻找能够利用这些数据的解决方案变得非常有意义。此外,流程工业的生产过程更加连续和复杂,一个地方的传感器异常可能意味着其他看似不相关的地方出现故障。因此,需要一种复杂的技术,能够"看到"整个工厂并建立不同部件和流程之间的联系。

2.大量传感器和异常数据

流程工业通常拥有数千个传感器,这使得设备状态的监测更加复杂。由于每个传感器可能出现异常,软件必须能够识别何时整个系统偏离正常状态。这就需要采用机器学习等先进算法来处理大量的异常数据,并准确地预测设备故障。

图. 通过机器学习等算法处理数据(图虫)

3.缺乏历史事件

与离散行业不同,流程工业中往往缺乏足够的历史故障事件来建立准确的预测模型。因此,构建预测性维护解决方案需要更多的复杂性和专业知识,以确保对异常情况和故障进行准确预测。

PreMaint设备数字化平台正是针对流程工业的这些独特需求而设计的。它基于先进的机器学习算法,并添加了工厂知识,以建立综合的工厂模型。通过将认知智能融入数据中,该平台能够提前发现设备异常并发出精确的警报。这些警报通过特定算法处理,并与工厂人员共享,从而实现对设备故障的准确预测,避免代价高昂的停机。

图.设备异常报警(PreMaint)

流程工业对预测性维护解决方案有着特定的需求,而设备数字化平台正是为满足这些需求而打造的先进解决方案。通过合理利用数据和先进算法,该平台为流程工业提供了更智能、更高效的预测性维护,助力企业实现生产的无缝运行与可持续发展。

相关推荐
珈和info2 小时前
《经济日报》深度聚焦|珈和科技携手万果博览荟共筑智慧农业新示范高地 全链赋能蒲江茶果产业数字化转型升级
人工智能·科技·物联网
yy0821yy2 小时前
科技赋能,开启现代健康养生新潮流
科技
weixin_510110402 小时前
人工智能如何做主题班会PPT?
人工智能·科技·职场和发展·课程设计
店小二电商工具箱3 小时前
电商运营数据分析指南之流量指标
科技·流量运营·用户运营
英码科技4 小时前
AI筑基,新质跃升|英码科技亮相华为广东新质生产力创新峰会,发布大模型一体机新品,助力产业智能化转型
人工智能·科技·华为
佰力博科技8 小时前
佰力博科技与您浅谈低温介电材料特性及应用分析
科技·量子计算
珈和info8 小时前
新浪《经济新闻》丨珈和科技联合蒲江政府打造“数字茶园+智能工厂+文旅综合体“创新模式
大数据·人工智能·科技
阿尔泰科技官方8 小时前
阿尔泰科技助力电厂——520为爱发电!
科技·电网·工业自动化·仪器仪表·数据采集卡·国家电力局
茗创科技8 小时前
Translational Psychiatry | 注意缺陷多动障碍儿童延迟厌恶的行为与神经功能特征茗创科技茗创科技
科技
weixin_lynhgworld11 小时前
海外盲盒系统开发:重构全球消费体验的科技引擎
科技·重构