深入NLTK:Python自然语言处理库高级教程

在前面的初级和中级教程中,我们了解了NLTK库中的基本和进阶功能,如词干提取、词形还原、n-gram模型和词云的绘制等。在本篇高级教程中,我们将深入探索NLTK的更多高级功能,包括句法解析、命名实体识别、情感分析以及文本分类。

一、句法解析

句法解析是自然语言处理中的一项重要任务,它的目的是识别出文本中词语之间的句法关系。在NLTK中,我们可以使用StanfordParser进行句法解析:

python 复制代码
from nltk.parse.stanford import StanfordParser

scp = StanfordParser(path_to_jar="path/to/stanford-parser.jar",
                     path_to_models_jar="path/to/stanford-parser-3.9.2-models.jar")

sentence = "The cat is chasing the mouse"
result = list(scp.raw_parse(sentence))

for tree in result:
    print(tree)

二、命名实体识别

命名实体识别(NER)是识别出文本中特定类别(如人名、地名、组织名等)实体的过程。在NLTK中,我们可以使用ne_chunk函数进行命名实体识别:

python 复制代码
from nltk import word_tokenize, pos_tag, ne_chunk

sentence = "Mark and John are working at Google."
print(ne_chunk(pos_tag(word_tokenize(sentence))))

三、情感分析

情感分析(Sentiment Analysis)是利用自然语言处理、文本分析和计算机语言学等技术来识别和提取文本中的主观信息。在NLTK中,我们可以使用VADER情感分析器进行情感分析:

python 复制代码
from nltk.sentiment.vader import SentimentIntensityAnalyzer

sid = SentimentIntensityAnalyzer()

text = "I love this car."
ss = sid.polarity_scores(text)

for k in ss:
    print('{0}: {1}, '.format(k, ss[k]), end='')

四、文本分类

文本分类是自然语言处理的另一个重要任务,NLTK提供了多种机器学习算法供我们进行文本分类,如朴素贝叶斯分类器:

python 复制代码
from nltk.corpus import names
from nltk.classify import apply_features
import random

def gender_features(word):
    return {'last_letter': word[-1]}

names = ([(name, 'male') for name in names.words('male.txt')] +
         [(name, 'female') for name in names.words('female.txt')])
random.shuffle(names)

featuresets = [(gender_features(n), g) for (n, g) in names]
train_set = apply_features(gender_features, names[500:])
test_set = apply_features(gender_features, names[:500])

classifier = nltk.NaiveBayesClassifier.train(train_set)

print(classifier.classify(gender_features('Neo')))

以上,我们介绍了NLTK库中的一些高级功能,包括句法解析、命名实体识别、情感分析以及文本分类等。通过深入学习和实践这些功能,我们可以进一步提升我们在自然语言处理领域的能力。

相关推荐
喵手30 分钟前
Python爬虫实战:数据治理实战 - 基于规则与模糊匹配的店铺/公司名实体消歧(附CSV导出 + SQLite持久化存储)!
爬虫·python·数据治理·爬虫实战·零基础python爬虫教学·规则与模糊匹配·店铺公司名实体消岐
喵手31 分钟前
Python爬虫实战:国际电影节入围名单采集与智能分析系统:从数据抓取到获奖预测(附 CSV 导出)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集数据csv导出·采集国际电影节入围名单·从数据抓取到获奖预测
派葛穆1 小时前
Python-PyQt5 安装与配置教程
开发语言·python·qt
自可乐1 小时前
Milvus向量数据库/RAG基础设施学习教程
数据库·人工智能·python·milvus
可触的未来,发芽的智生1 小时前
发现:认知的普适节律 发现思维的8次迭代量子
javascript·python·神经网络·程序人生·自然语言处理
sheji34161 小时前
【开题答辩全过程】以 基于SpringBoot的疗养院管理系统的设计与实现为例,包含答辩的问题和答案
java·spring boot·后端
短剑重铸之日2 小时前
《设计模式》第六篇:装饰器模式
java·后端·设计模式·装饰器模式
真智AI2 小时前
用 LLM 辅助生成可跑的 Python 单元测试:pytest + coverage 覆盖率报告(含运行指令与排坑)
python·单元测试·pytest
0思必得02 小时前
[Web自动化] Selenium处理文件上传和下载
前端·爬虫·python·selenium·自动化·web自动化
Hui Baby3 小时前
Java SPI 与 Spring SPI
java·python·spring