【学习笔记】生成式AI(ChatGPT原理,大型语言模型)

ChatGPT原理剖析

  • 语言模型 == 文字接龙
  • ChatGPT在测试阶段是不联网的。

ChatGPT背后的关键技术:预训练(Pre-train)

  • 又叫自监督式学习(Self-supervised Learning),得到的模型叫做基石模型(Foundation Model)。在自监督学习中,用一些方式"无痛"生成成对的学习资料。



  • GPT1 -> GPT2 -> GPT3 (参数量增加,通过大量网络资料学习,这一过程称为预训练),GPT -> ChatGPT (增加人类老师提供的资料学习),GPT到ChatGPT增加的继续学习的过程就叫做 微调 (finetune)。

预训练多有帮助呢?

  • 在多种语言上做预训练后,只要教某一个语言的某一个任务,自动学会其他语言的同样任务。
  • 当在104种语言上预训练,在英语数据上微调后在中文数据上测试的结果(78.8的F1值),和在中文数据上微调并在中文数据上测试的结果(78.1的F1值)相当。

ChatGPT带来的研究问题

  • 1.如何精准提出需求
  • 2.如何更正错误【Neural Editing】
  • 3.侦测AI生成的物件
    • 怎么用模型侦测一段文字是不是AI生成的
  • 4.不小心泄露秘密?【Machine Unlearning】

对于大型语言模型的两种不同期待 Finetune vs. Prompt

  • 成为专才,对预训练模型做改造,加外挂和微调参数。

  • 成为通才,机器要学会读题目描述或者题目范例
    • 题目叙述--Instruction Learning
    • 范例--In-context Learning
  • In-context Learning
  • 给机器的范例的domain是很重要的;范例的数量并不需要很多,并不是通过范例进行学习,范例的作用只是唤醒模型的记忆;也就是说,语言模型本来就会做情感分析,只是需要被指出需要做情感任务。
  • Instruction-tuning
相关推荐
Luis Li 的猫猫1 小时前
深度学习中的知识蒸馏
人工智能·经验分享·深度学习·学习·算法
木觞清3 小时前
PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
人工智能·pytorch·tensorflow
鹿鸣悠悠3 小时前
第二月:学习 NumPy、Pandas 和 Matplotlib 是数据分析和科学计算的基础
学习·numpy·pandas
Java能学吗5 小时前
2.17学习总结
数据结构·学习
靡不有初1116 小时前
CCF-CSP第31次认证第二题——坐标变换(其二)【NA!前缀和思想的细节,输出为0的常见原因】
c++·学习·ccfcsp
wyg_0311136 小时前
用deepseek学大模型04-模型可视化与数据可视化
人工智能·机器学习·信息可视化
陈敬雷-充电了么-CEO兼CTO7 小时前
DeepSeek核心算法解析:如何打造比肩ChatGPT的国产大模型
人工智能·神经网络·自然语言处理·chatgpt·大模型·aigc·deepseek
南风过闲庭8 小时前
人工智能泡沫效应
大数据·人工智能·科技·搜索引擎·百度·ai
我是一个对称矩阵8 小时前
YOLOv5-Seg 深度解析:与 YOLOv5 检测模型的区别
人工智能·yolo·目标跟踪
AomanHao9 小时前
图像质量评价指标-UCIQE-UIQM
图像处理·人工智能·计算机视觉·评价指标