【学习笔记】生成式AI(ChatGPT原理,大型语言模型)

ChatGPT原理剖析

  • 语言模型 == 文字接龙
  • ChatGPT在测试阶段是不联网的。

ChatGPT背后的关键技术:预训练(Pre-train)

  • 又叫自监督式学习(Self-supervised Learning),得到的模型叫做基石模型(Foundation Model)。在自监督学习中,用一些方式"无痛"生成成对的学习资料。



  • GPT1 -> GPT2 -> GPT3 (参数量增加,通过大量网络资料学习,这一过程称为预训练),GPT -> ChatGPT (增加人类老师提供的资料学习),GPT到ChatGPT增加的继续学习的过程就叫做 微调 (finetune)。

预训练多有帮助呢?

  • 在多种语言上做预训练后,只要教某一个语言的某一个任务,自动学会其他语言的同样任务。
  • 当在104种语言上预训练,在英语数据上微调后在中文数据上测试的结果(78.8的F1值),和在中文数据上微调并在中文数据上测试的结果(78.1的F1值)相当。

ChatGPT带来的研究问题

  • 1.如何精准提出需求
  • 2.如何更正错误【Neural Editing】
  • 3.侦测AI生成的物件
    • 怎么用模型侦测一段文字是不是AI生成的
  • 4.不小心泄露秘密?【Machine Unlearning】

对于大型语言模型的两种不同期待 Finetune vs. Prompt

  • 成为专才,对预训练模型做改造,加外挂和微调参数。

  • 成为通才,机器要学会读题目描述或者题目范例
    • 题目叙述--Instruction Learning
    • 范例--In-context Learning
  • In-context Learning
  • 给机器的范例的domain是很重要的;范例的数量并不需要很多,并不是通过范例进行学习,范例的作用只是唤醒模型的记忆;也就是说,语言模型本来就会做情感分析,只是需要被指出需要做情感任务。
  • Instruction-tuning
相关推荐
Light605 分钟前
【MCP原生时代】第7篇|治理与合规:在模型驱动自动化中把控法律、隐私与伦理风险——把“能做什么”变成可审计、可解释、可追责的企业能力
人工智能·隐私·审计·治理·合规·mcp·伦理
YJlio6 分钟前
Strings 学习笔记(12.1):从二进制里“扒”出明文信息的瑞士军刀
服务器·笔记·学习
Coder_Boy_10 分钟前
业务导向型技术日志记录(2)
java·人工智能·驱动开发·微服务
海边夕阳200621 分钟前
【每天一个AI小知识】:什么是多模态学习?
人工智能·深度学习·机器学习·计算机视觉·语言模型·自然语言处理
老艾的AI世界22 分钟前
最新AI幻脸软件,全面升级可直播,Mirage下载介绍(支持cpu)
图像处理·人工智能·深度学习·神经网络·目标检测·ai
凤希AI伴侣24 分钟前
架构重构与AI能力聚焦:一人开发的自动化未来 凤希AI伴侣 · 开发日记 · 2025年12月20日
人工智能·重构·自动化·凤希ai伴侣
攻城狮7号24 分钟前
微软开源 TRELLIS.2:单图 3 秒变 3D?
人工智能·3d·trellis.2·o-voxel·sc-vae·微软开源模型
运维@小兵26 分钟前
Spring AI系列——开发MCP Server和MCP Client(SSE方式)
java·人工智能·spring
free-elcmacom26 分钟前
机器学习高阶教程<8>分布式训练三大核心策略拆解
人工智能·分布式·python·机器学习
珂朵莉MM30 分钟前
第七届全球校园人工智能算法精英大赛-算法巅峰赛产业命题赛第一赛季优化题--无人机配送
人工智能·算法·无人机