Demystifying Prompts in Language Models via Perplexity Estimation

Demystifying Prompts in Language Models via Perplexity Estimation

原文链接

Gonen H, Iyer S, Blevins T, et al. Demystifying prompts in language models via perplexity estimation[J]. arXiv preprint arXiv:2212.04037, 2022.

简单来说就是作者通过在不同LLM和不同任务上的实验,发现低困惑度的prompt更能提升LLM的性能 ,如下图所示,困惑度和acc大致呈一个负相关的趋势。

作者为了证明自己的猜想,先手写了少量人工prompt,之后交给LLM paraphrase,包括用命令让LLM直接重写以及来回翻译(翻译成别的语言再翻译回来),从而得到了大量prompt。作者之后测试了这些prompt的性能,并计算了困惑度和表现得相似度,基本都是负相关。

基于此,作者提出了一种新的prompt方式,也就是先手写,再paraphrase,最后根据困惑度筛选。

相关推荐
Funny_AI_LAB4 分钟前
RAD基准重新定义多视角异常检测,传统2D方法为何战胜前沿3D与VLM?
人工智能·目标检测·3d·ai
星河队长5 分钟前
人工智能的自我认知
人工智能
无人装备硬件开发爱好者9 分钟前
AI 赋能航天造物:LEAP71 式火箭发动机计算工程软件开发全解析 1
人工智能·商业火箭发动机·增材加工·leap71
数智联AI团队12 分钟前
AI搜索引领行业变革:2023年GEO优化服务市场深度洞察与专业机构选择指南
人工智能
PaperRed ai写作降重助手13 分钟前
主流 AI 论文写作工具排名(2026 最新)
人工智能·aigc·ai写作·论文写作·论文降重·论文查重·辅助写作
翱翔的苍鹰13 分钟前
一个简单的法律问答机器人实现思路
人工智能·深度学习·语言模型·自然语言处理
njsgcs14 分钟前
我要fork openclaw了 ai自己写skill
人工智能
小W与影刀RPA17 分钟前
【影刀RPA】:智能过滤敏感词,高效输出表格
大数据·人工智能·python·低代码·自动化·rpa·影刀rpa
铁蛋AI编程实战21 分钟前
DeepSeek mHC 架构 + Agent 实战大模型开发指南
人工智能·架构·开源
源于花海29 分钟前
迁移学习简明手册——迁移学习相关研究学者
人工智能·机器学习·迁移学习·研究学者