Demystifying Prompts in Language Models via Perplexity Estimation

Demystifying Prompts in Language Models via Perplexity Estimation

原文链接

Gonen H, Iyer S, Blevins T, et al. Demystifying prompts in language models via perplexity estimation[J]. arXiv preprint arXiv:2212.04037, 2022.

简单来说就是作者通过在不同LLM和不同任务上的实验,发现低困惑度的prompt更能提升LLM的性能 ,如下图所示,困惑度和acc大致呈一个负相关的趋势。

作者为了证明自己的猜想,先手写了少量人工prompt,之后交给LLM paraphrase,包括用命令让LLM直接重写以及来回翻译(翻译成别的语言再翻译回来),从而得到了大量prompt。作者之后测试了这些prompt的性能,并计算了困惑度和表现得相似度,基本都是负相关。

基于此,作者提出了一种新的prompt方式,也就是先手写,再paraphrase,最后根据困惑度筛选。

相关推荐
cxr8281 天前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡1 天前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成1 天前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃1 天前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)1 天前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao1 天前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶
limengshi1383921 天前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
AKAMAI1 天前
Sport Network 凭借 Akamai 实现卓越成就
人工智能·云原生·云计算
周末程序猿1 天前
机器学习|大模型为什么会出现"幻觉"?
人工智能
JoannaJuanCV1 天前
大语言模型基石:Transformer
人工智能·语言模型·transformer